
INFORMATION SOCIETY TECHNOLOGIES

(IST)

PROGRAMME

Project IST-2001-33562 MoWGLI

D4.e Refined and extended protoype of the LATEX -

based authoring tool

Author: Romeo Anghelache

Project Acronym: MoWGLI
Project full title: Mathematics On the Web: Get it by Logic and Interfaces
Proposal/Contract no.: IST-2001-33562 MoWGLI



MoWGLI, IST-2001-33562 2

1 Introduction

The authoring tool described here is created to support automatic generation of XML and
MathML from LATEX sources. We call it Hermes: because we interpret it as the carrier
of (meaningful) messages. It also can achieve a more general goal: adding and recovering
semantic depth and clarity to LATEX written documents, which makes it relevant to e-publishing
and digital libraries, as a method of recovering and storing scientific content that can go beyond
mathematics (e.g. it can be extended to cover ChemicalML, SVG etc.).

The refined Hermes prototype generates an XML file with a typical structure of an
article, containing MathML islands; this structure is entirely determined by the LATEX source,
the semantic depth of the output depends essentially on using the macros Hermes provides.

2 Description

Hermes complements the LATEX system: it enables the authors of scientific articles to sharpen
the semantics of their work while preserving a high quality rendering. Hermes is written from
scratch.

The refined prototype implementation of Hermes has the following components:

• a set of helper LATEX macros, which allows the author to disambiguate the meaning of
the mathematical expressions he writes, while allowing some choices for the presentation;
this set is included by the author in the originally written LATEX document (it resides
in the ’ltxdef.tex’ file in the Hermes distribution, detailed in 4.1). A LATEX run on
the macro-enriched document will output a ’semantic dvi’ file (a dvi file containing
’special’ annotations of various combinations of graphical and nongraphical symbols in
the source).

• a scanner, written in flex, which extracts from the resulting ’semantic dvi’ file the
semantic tokens seeded by the macro collection above and sends them to the parser
below (the ’hermes.l’ file in the Hermes distribution, detailed in 4.2).

• a parser, written in bison, which is a grammar that performs a semantic action when
a structured set of tokens is recognized (the ’hermes.y’ file in the Hermes distribution,
detailed in 4.3); the semantic action is the creation of parts of the XML output; the
parser and the scanner compile into a ’semantic dvi’ translator called ’the Hermes
translator’.

The refined Hermes prototype handles mathematical expressions in LATEX as follows:

1. arbitrary expressions/symbols are encoded first in Presentation-MathML

2. expressions which have a clear meaning are wrapped further in Content-MathML

3 Architecture

Hermes does not replace nor modify the functionality of the TEX engine, thus, it does not
restrict the set of macros used while authoring the original document, this freedom is a result
of using the dvi format as input.



MoWGLI, IST-2001-33562 3

Hermes is content oriented: a maximal effort is made on generating Content-MathML.
Generating content requires a high degree of accuracy in fitting the output structures with
the authored input as it is intended for machine consumption (search engines, mathematical
computation), so, in those places where the input is too ambiguous, the output will be only
Presentation-MathML.

Hermes is also document oriented. It aims at generating the semantic information avail-
able typically in a legacy scientific article (text, keywords, references, author information,
document structure etc.) or supplementary layers of metadata for the newly created docu-
ments. The refined prototype also handles references to bibliographical items or equations.

Hermes preserves the presentational output of the original source documents. This is a
feature of the Hermes macros: they leave the graphical objects unmodified (if they are used
for making legacy TEX documents semantically rich) while attaching semantics to them in the
background.

Hermes lets the author the freedom to improve the meaning of an arbitrary LATEX chunk,
but is also be prepared to convert a legacy source document into a renderable XML with no
manual intervention.

This feature enables gradual annotation of scientific work and allows adding semantic depth
(e.g. improving its reachability on the Internet or its compatibility with a new mathematical
software tool). The refined prototype is in ’beta’ stage of development along this direction.

4 Source code distribution

The Hermes refined prototype’s source distribution consists of 3 files: the semantic macros,
the token vocabulary and the grammar.

The first is necessary to author content-oriented documents, or to transform a legacy LATEX
document into a content-oriented document; the last pair is necessary to build the Hermes
translator, which is aware of the content oriented macros above.

To help generate an example, this source distribution comes also with a stylesheet (’pre.xsl’)
which prepares the XML output of the Hermes translator for rendering as XHTML with
MathML islands (the latter, in turn, is obtained by filtering this XML output through the
generic MathML stylesheet, ’mathml.xsl’, from w3.org).

The distribution contains also a makefile which automates the creation of the Hermes
compiler and creates a renderable Content-MathML example out of a LATEX source example.

4.1 Definitions

Recovering or adding semantics from LATEX sources is achieved by leaving appropriate traces
into the dvi file using the LATEX ’special’ command (at low level, by activating some of the
characters or simply prefixing the old LATEX command with a ’special’ string); these traces are
enabled by a set of macros residing in the ’definitions’ file. The way they should be used is
mostly self-explanatory: some of them decorate the corresponding old TEX ones (the author
simply uses the same TEX commands), the rest are supplying the structures needed to cover
Content-MathML mahematical expressions (the author needs to use these ones if he wants to
ensure Content-MathML output, they usually start with a capital letter), and all of them are
commented.

The semantic traces are tokenized by the scanner, along with the characters in TEX’s fonts.



MoWGLI, IST-2001-33562 4

4.2 Scanner

The scanner uses regular expressions and particular states to recover the tokens from the
dvi file; it understands all the dvi commands and also keeps track of the current font and
movements through an internal stack.

The handled tokens are the ones defined by the macros described above and all the byte-
codes typically present in the dvi file are dealt with. The refined prototype maps each code
in the TeX fonts into the corresponding code in Unicode, where there is a Unicode equivalent
glyph.

The way the scanner source is organized makes it easy to understand the categories of
tokens it tackles: basic tokens (e.g. ’ANY’), TEX tokens (e.g. ’SQRT’), structured tokens
(e.g. ’BMoment’ and ’EMoment’, along with ’BMomentDeg’ and ’EMomentDeg’ etc.) that
come in pairs (prefixes Begin=B, End=E) wrapping the structure inside.

4.3 Parser

The parser expects various combinations of semantic tokens from the scanner. When a struc-
ture is recognized, the appropriate XML output string of characters is built. The refined
prototype of Hermes recognizes LATEX inline or display mathematical areas and builds the
appropriate MathML code.

Some of the operators or variables in the source documents are recognized implicitly (e.g.
’+’), in these cases there is no need for any Hermes provided macro to create the appropriate
MathML code (e.g. <mo>+</mo>).

Others are provided by Hermes as explicit complementary, content-oriented, macros (e.g.
’Laplacian’ or ’Listl’ in the ’ltxdef.tex’) which also have associated with them a specific ren-
dering in a normal (pdf)LATEX run.

The rest of the parser is made of ’C’ routines. Some of them put the corresponding XML
tags in the right place, based on usual mathematics precedence rules or the nature and context
of the mathematical entity under treatment. Other routines, executed at the end of a structure
recognition, prepare the intermediary string for a final ordering; yet other routines are simple
helpers for the above or do the pretty printing of the XML output.


	Introduction
	Description
	Architecture
	Source code distribution
	Definitions
	Scanner
	Parser


