
INFORMATION SOCIETY TECHNOLOGIES

(IST)

PROGRAMME

Project IST-2001-33562 MoWGLI

Preliminary Report on Application Scenarios
and Requirement Analysis

Main Authors:
A. Asperti, Y. Bertot, H. Geuvers, E. Gimenez, H. Herbelin, P. Libbrecht,

L. Padovani, C. Sacerdoti Coen, I. Schena, B. Schutz, C. Weyher.

Project Acronym: MoWGLI

Project full title: Mathematics On the Web: Get it by Logic and Interfaces
Proposal/Contract no.: IST-2001-33562 MoWGLI

MoWGLI, IST-2001-33562 2

Contents

1 Introduction 4
1.1 Semantics, Content and Presentation . 5
1.2 Beyond expressions . 6

2 The role of XML technology 8
2.1 XML and the standardisation effort . 9

3 Application Scenarios 11
3.1 Sample document 1 . 11

3.1.1 What one would like to do with the file 12
3.1.2 What types of content do we need to be representable in MoWGLI? . . 12

3.2 Sample document 2 . 13
3.2.1 What one would like to do with the files 16
3.2.2 What types of content do we need to be representable in MoWGLI? . . 17

3.3 Sample document 3 . 17
3.3.1 Security evaluation of IT products . 17
3.3.2 Documents involved in the evaluation procedure 18
3.3.3 What one would like to do with the files 20
3.3.4 What types of content do we need to be representable in MoWGLI? . . 21
3.3.5 Some general requirements . 23

3.4 Discussion . 23

4 Standard Languages for Mathematical Knowledge Representation 26
4.1 The Mathematical Markup Language . 26

4.1.1 Presentation elements . 26
4.1.2 Content elements . 26
4.1.3 Keeping both Content and Presentation 28

4.2 OpenMath . 28
4.3 OMDoc . 29

4.3.1 Mathematical Theories in OMDoc . 29
4.3.2 Simple Theories . 30
4.3.3 Complex Theories and Inheritance . 31

5 Authoring 32
5.1 Authoring in the context of proof assistants . 32

5.1.1 Creating new mathematics . 32
5.1.2 Putting Formal Mathematics on the Web 33

5.2 Authoring in a free context . 34

6 Stylesheets and Transformation 35
6.1 Export . 36
6.2 Transformation . 38
6.3 Presentation . 39
6.4 Stylesheet editing . 40

MoWGLI, IST-2001-33562 3

7 Rendering tools 42
7.1 Languages for Scientific Documents . 42

7.1.1 XML-based Languages . 42
7.1.2 Other Markup-based Languages . 42
7.1.3 Low-level, Page-description Languages 43

7.2 Applications for MathML . 43
7.2.1 Web Browsers . 43
7.2.2 Extensions . 44
7.2.3 Indirect Rendering . 44

7.3 Requirements . 44

8 Interaction, Editing and Other Dynamic Aspects 46
8.1 Hypertexts . 46
8.2 Dependency Graphs . 47
8.3 Parametric Documents . 48
8.4 Semantic Selection . 49
8.5 Dynamic Documents . 50
8.6 WYSIWYG Editing . 50

8.6.1 Alternatives to WYSIWYG Editing . 51

References 52

MoWGLI, IST-2001-33562 4

1 Introduction

The World Wide Web and its technology is rapidly changing the way mathematicians deal
with knowledge. Sophisticated portals, search engines, and databases currently provide an
easy and friendly way for finding information in the fast-growing realm of mathematical in-
formation (A.M.Odlyzko [21] estimated that the amount of published mathematics doubles
every ten-fifteen years). The distinguished experimental mathematician P.Borwein has re-
cently declared [4]: “I stopped reading mathematics journals some years ago . . . MathSciNet
replaced browsing”. MathSciNet, developed under the auspices of the American Mathemati-
cal Society, is a typical example of a state-of-the-art searchable web database: it covers 1799
journals, offering links to 192200 original articles, and indexing over 300000 authors (over
20000 new items have been added since the beginning of 2002). However, MathSciNet has
clear limitations: on one side the HTML interface does not adequately support mathematical
notation, with the consequence that abstracts and reviews are often unpleasant to read and
sometimes hard to understand; on the other side, it does not offer any support for searching
by mathematical content, instead of mathematical (key-)words. The first problem is likely
to be rapidly solved by emerging display technologies like MathML. The second problem is
far more complicated, concerning the very way mathematics is actually encoded: currently,
almost all mathematical documents available on the Web are marked up only for presentation,
severely crippling the potentialities for automation, interoperability, sophisticated searching
mechanisms, intelligent applications, transformation and processing. The goal of MoWGLI is
exactly to explore the possibilities for overcoming these limitations, passing from a machine-
readable to a machine-understandable representation of the information, and developing the
technological infrastructure for its exploitation.

The problem of suitably representing mathematical knowledge is an essential prerequisite
for any kind of mathematical knowledge management, a new topic of research which is recently
attracting an increasing interest among the mathematical and computer science community.
The success of the first International Conference on Mathematical Knowledge Management,
currently at its second edition (http://www.cs.unibo.it/MKM03), and the recent creation of
the European Network IST-2001-37057 KMK-NET are clear hints of this trend. But the real
novelty is the, comprehensibly timid, but equally evident interest that maintainers of digital
libraries are paying for a more contenutistic description of mathematics.

On a completely different level, there is a compelling need of integration between the
current tools for automation of formal reasoning and mechanisation of mathematics (proof as-
sistants and logical frameworks) and the most recent technologies for the development of web
applications and electronic publishing. Currently, libraries in logical frameworks are usually
saved in two formats: a textual one, in the specific tactical language of the proof assistant,
and a compiled (proof checked) one in some internal, concrete representation language. Both
representations are obviously unsatisfactory, since they are too oriented to the specific applica-
tion: the information is not directly available, if not by means of the functionalities offered by
the system itself. This is in clear contrast with the main guidelines of the modern Information
Society, and its new emphasis on content.

The requirements, are in this case somewhat dual to the case of digital libraries: we
have here a strongly formalised and machine-understandable encoding, that however is too
application dependent, prevents any kind of interoperability, and any kind of modularisation
even of those functionalities (like e.g. displaying or searching) which are largely independent
from the specific formal system.

http://www.cs.unibo.it/MKM03

MoWGLI, IST-2001-33562 5

One of the main aim of MoWGLI is to look for a possible common ground, provided,
in our view, by a semi-formal content description of mathematical information, between the
distant communities of automation of formal reasoning and digital libraries management. Of
course, it is important to be aware that arriving to a real integration between these two worlds
is a long term goal which is far off the limited objectives of MoWGLI. In a recent paper [23]
of the Bulletin of Symbolic Logic devoted to the prospects of proof theory and logic for the
new century, the following prediction was made:

”Computer databases of mathematical knowledge will contain, organize and re-
trieve most of the known mathematical literature by 2030”

MoWGLI is just meant to be a very preliminary step in this direction (and the fact of having
put the two communities together inside a single project is already a success). What we
may reasonably expect is just to elucidate the problems and the requirements for a “content”
description of mathematics, hopefully reaching some agreement on a standard encoding for
some fragments, and developing tools which could allow to test the new potentialities offered
by this representation.

1.1 Semantics, Content and Presentation

By the previous discussion, it should be clear that we are dealing with at least three different
encoding of mathematical information: semantics, content and presentation.

The distinction between content and presentation is clear, and it was already evinced in
the Mathematical Markup Language (MathML) recommended by the World Wide Web as the
intended standard for encoding of mathematical expressions on the Web. The same document,
however, is quite confused in addressing the intended semantics of the mathematical operators.

By semantics, we mean here a really formal encoding, such as it could be profitably used by
a machine in order to understand and manipulate the mathematical content of the information
(in particular, it is not just a pedantic foundational issue, but a really practical automation
problem). If we consider a typical content element of MathML such as, e.g. the logical
implication, it is clear that the language is not trying to capture a formal semantics for it
(no reference to, say, classical first order logic is explicitly made in the Recommendation),
but merely the structure, i.e. the abstract syntax, of an implicative formula. Even “simpler”
mathematical operators like a sum, may be ambiguously interpreted if there is no agreement
on the underlying data structure (e.g. integers in arbitrary or fixed precision). The MathML
specification is not entering in these details, clearly leaving to the application the burden to
give a formal interpretation to the operators, hopefully “reasonably” close to the “intended”,
informal meaning.

In particular, the distinction between content and semantics makes sense only in view
of the intended elaboration of the information. From the point of view of a digital library,
the main reason for adding “content” is to facilitate some kind of searching and retrieving
functionalities which could not be otherwise implemented disposing of a mere presentational
markup. A second, mid-term reason, could be the possibility of passing some expressions into
a computer algebra system, to check their formal validity. A really long-term goal (definitely
beyond the scope of MoWGLI) is to be able to formally check proofs. For the first kind of
elaboration, no strictly formal semantics is required: a “content” description capturing the
intended name and structural syntax of the mathematical operator is enough. Pushing too
far a semantical distinction between “similar” operators, or refining too much the descriptive

MoWGLI, IST-2001-33562 6

markup, could even have a negative impact on the effectiveness of the research. For the
purpose of giving an expression as input to a computer algebra system, some kind of formal
semantics is required, but in this case we could assume that the intended domain of the
application is sufficiently clear to allow a precise mapping from content to semantics. The real
problems, and the necessity of making a clear distinction between content and semantics only
arise when we enter in the delicate problem of checking proofs, that requires to give a precise
meaning even to common datatypes or operators, which are hardly “primitive” in the logical
systems. In this case, the semantical markup may strictly depend both on the particular
logical, foundational system and by the precise formalisation of the mathematical notion in
the given logical framework.

Since the goal of attaining a real integration between digital libraries and tools for auto-
matic checking of proofs is clearly beyond the scope of MoWGLI, the real question is the
following:

Does a content description fruitful for the intended usage inside digital libraries
have any interesting meaning and usage from the point of view of tools for the
automation of formal reasoning?

If the answer is negative, there is no common ground for a fruitful collaboration for the two
communities yet, and we shall have to wait for more substantial progresses of the latter tools.

However, the claim of MoWGLI is that there are good reasons for answering positively
to the previous question.

First of all, a semi-formal content level appears to be a main component of the typical
mathematical practice. Typically, if we meet an integration symbol in a mathematical state-
ment we hardly wonder what kind of integration has been dealt with by the author. It is only
at a second stage, if and when we possibly meet some technical and obscure formal detail, that
we may come back to check the precise intended meaning of the symbol. So, a pseudo-formal
contenutistic level seems indeed to belong to the usual practice of mathematics. We could
even claim that these kind of “notational abuse” is in some case a useful and fruitful tool of
mathematics.
In general, given any operator of the mathematical language, it looks possible to associate
to the operator a content (e.g. “some” kind of integration) and a semantics (“what” kind of
integration). It is indeed the fact that different integrations have a strong and common nature
that justifies the fact of calling - all of them - integrations.

Secondly, this “content” layer provides an essential abstraction over the strictly formal
description, providing a simple way for improving the modularity of the applications for sev-
eral important elaboration issues, such as rendering and searching/retrieving operations. In
particular, after defining a mapping from “semantics” to “content”, all the tools developed
for the latter layer may be directly and profitably applied to the former.

Least, but not last, the “content” layer fixes names and structure, that is one of the most
cumbersome aspects of mathematical standardisation.

1.2 Beyond expressions

Another important topic is the necessity to go beyond the mere description of mathematical
expressions. Mathematics is a richly structured language, not only at the level of expressions,
but at several different layers, comprising proof, statements, theories, and so on. It looks
extremely important to be able to introduce a reasonable markup for all these layers, especially

MoWGLI, IST-2001-33562 7

from the point of view of automation of formal reasoning. A precise discussion of these
layers will be the subject of the report on “Structure and Metastructure of Mathematical
Developments”.

It is however important to point out that, even at this level, there is probably a reasonable
space for a “content” description as opposed to a “semantic” one.

Current standardisation efforts such as the “Weak Type Theory” of R. Nederpelt and
F. Kamareddine [20] are exactly aimed to provide a sort of intermediate language between the
natural language of the mathematician and the formal language of the logician.

The OMDoc format [3, 14] (see section 4.3) adds content markup at the level of mathemat-
ical statements and theories. It uses OpenMath and content MathML for formula representa-
tion. Whereas weak type theory attempts a linguistically motivated treatment of classification
of everyday mathematical language constructions, OMDoc adds XML-based representation
primitives and a basic infrastructure for document relations.

MoWGLI, IST-2001-33562 8

2 The role of XML technology

Before entering in a more detailed description of a few typical application scenarios, it is
worth to spend a few words on the role of XML technology in the project. As a matter of fact,
XML is the main new technological ingredient which has allowed to start anew the ambitious
goal of mathematical knowledge management on a solid technological ground, opening new
perspectives which were just unrealistic before.

XML [36], whose development started in 1996 by a Working Group under the aegis of the
World Wide Web Consortium, was conceived as a streamlined version of SGML1 designed to
simplify transmission and manipulation of structured documents over the Web. Its purpose is
to encode information according to their structure and content, via markup tags and hyper-
links. The markup makes possible manipulation, analysis, storage, linking, and transformation
of all media, obviously comprising text.

Once in XML, the information is directly available to everybody (you have no longer to
rely on the facilities offered by the specific applications). You may already start to develop
your own applications on top of it (like complex spiders looking for specific structures inside
the terms of the library, or tools for extracting metadata, or interfaces with databases, or
whatever). All these applications are likely to be re-usable or easily adaptable to whatever
logical dialect has been used to encode the information.

In particular, by choosing XML as a central technology for storing, retrieving and process-
ing mathematical documents, we expect major benefits in all of the following crucial areas:

Interoperability If having a common representation layer is not the ultimate solution to
all interoperability problems between different applications, it is however a first and
essential step in this direction.

Standardisation Having a common, application independent encoding for mathematical
proofs, similar software tools could be applied to different logical dialects, regardless
of their concrete nature. This would be especially relevant for those operations like
searching, retrieving, displaying or authoring (just to mention a few) that are largely
independent of the specific logical system.

Publishing There exist sophisticated Web-publishing technologies based on XML, such as
Stylesheets, MathML, Formatting Objects. Among the benefits of these technologies,
the most important ones for HELM are media independence and notational and stylistic
customisation. The combination of client-side customisable rendering languages with
the flexibility of user-provided stylesheets can be profitably used to solve, in a stan-
dard, extensible way the annoying notational problems that traditionally afflict formal
mathematics.

Searching & Retrieving The World Wide Web Consortium is currently doing a big effort
in the Metadata and Semantic Web area. Languages such as the Resource Description
Framework or XML-Query are likely to produce innovative technological solutions in
this field.

Modularity The “XML-ization” process should naturally lead to a substantial simplification
and re-organisation of the current, “monolithic” architecture of logical frameworks. The

1The Standard Generalized Markup Language (SGML) is an international Standard which has been widely
used in high-end areas of information management and publishing.

MoWGLI, IST-2001-33562 9

many different and often loosely connected functionalities of these complex programs
(proof checking, proof editing, proof displaying, search and consulting, program extrac-
tion, and so on) could be clearly split in more or less autonomous tasks, possibly (and
hopefully!) developed by different teams, in totally different languages. This is the new
content-based architecture of future systems.

2.1 XML and the standardisation effort

XML is a meta-language. The syntactical structure of domain specific languages may be
defined by the so called Document Type Definitions [36], i.e. grammar specifications describing
the structure and attributes of elements for each specific instance of XML.

It is important to understand that the same information may be encoded in different
ways, according to its intended use. The point of XML is that of exploiting the potentialities
of all these different encodings, providing tools (such as stylesheets) for passing from one
encoding to the other. So, standardisation must be pushed at specific descriptive layers, for
specific uses, carefully avoiding the hopeless quest for a “universal” mathematical language
(the standardisation we are pursuing is first of all technological, and not logical).

As an example, let us consider the simple mathematical expression ∀a(a ∗ 0 = 0).
The typical content encodings of this expression into MathML and OpenMath – instances

of XML explicitly conceived for the management of mathematical expressions on the Web (see
sections 4.1 and 4.2) – are the following:

<math> <OMOBJ>
<apply> <OMBIND>
<forall/> <OMS cd="quant1" name="forall"/>
<bvar> <OMBVAR>
<ci type="integer">a</ci> <OMV name="a"/>
</bvar> </OMBVAR>
<apply> <OMA>
<eq/> <OMS cd="relation1" name="eq"/>
<apply> <OMA>
<times/> <OMS cd="arith1" name="times"/>
<ci type="integer">a</ci> <OMV name="a"/>
<cn>0</cn> <OMI>0</OMI>
</apply> </OMA>
<cn>0</cn> <OMI>0</OMI>
</apply> </OMA>

</apply> </OMBIND>
</math> </OMOBJ>

The same expression inside a typical Proof Assistant may have a sensibly different repre-
sentation. For example, in the case of Coq:

1. we are dealing with a strongly typed foundational system, where types must be explicited

2. types in Coq can be instances of a primitive construction called “mutual inductive type”.
This is the case for natural numbers, and also for particular relations such as equality.

MoWGLI, IST-2001-33562 10

3. the constant “0” is just the first constructor of (the first and in this case unique mutual
inductive) type of natural numbers.

4. multiplication is not a primitive operation

5. bound variables are internally represented by means of DeBruijn indexes.

So, a more faithful encoding of the same information may look as follows:

<Definition name="mult_n_O" id="i0" params="">
<type>
<PROD id="i32">
<source>
<MUTIND uri="cic:/Coq/Init/Datatypes/nat.ind" noType="0"/>
</source>
<target binder="a">
<APPLY id="i34">
<MUTIND uri="cic:/Coq/Init/Datatypes/nat.ind" noType="0"/>
<MUTIND uri="cic:/Coq/Init/Logic/Equality/eq.ind" noType="0"/>
<APPLY id="i37">
<CONST uri="cic:/Coq/Init/Peano/mult.con"/>
<REL value="1" binder="a" id="i39"/>
<MUTCONSTRUCT uri="cic:/Coq/Init/Datatypes/nat.ind" noType="0" noConstr="1"/>
</APPLY>
<MUTCONSTRUCT uri="cic:/Coq/Init/Datatypes/nat.ind" noType="0" noConstr="1"/>
</APPLY>
</target>
</PROD>

</type>
</Definition>

No one of the previous XML encodings could be claimed to be better than the other,
they are at the extremes of content/semantic markup of mathematical expressions and encode
different information, for different intended uses. In particular, the MathML encoding provides
a typical example of “content” description, as opposed to the strictly formal, “semantical”
encoding of the second dialect. It is however fairly easy to map semantics over content, thus
recovering the intended “content” of the formal expression and the possibility to uniformly
use “content” tools for e.g. searching or publishing issues.

Moreover, while – at the semantical level – we cannot escape, both theoretically and prac-
tically, the multi-lingual environment of the foundations of mathematics, we may reasonably
hope to reach a higher degree of linguistic standardisation at “content” level (provided we
renounce to attribute a strong semantical meaning to this layer).

MoWGLI, IST-2001-33562 11

3 Application Scenarios

There are three types of ‘mathematical-content’ documents that we will consider in MoWGLI:
real scientific papers from different fields such as mathematics and physics; formalised mathe-
matics (within the Coq proof-assistant); documentation for security evaluation of IT products.
For each one we present a small sample document with a listing of the desired features that
we should provide and the corresponding content requirements.

3.1 Sample document 1

This sample document has been extracted from:

Luc Blanchet, ”Gravitational Radiation from Post-Newtonian Sources and Inspi-
ralling Compact Binaries”, Living Rev. Relativity 5, (2002), 3. [Online Journal Ar-
ticle]: http://www.livingreviews.org/Articles/Volume5/2002-3blanchet/index.html
Section 4.1.: The post-Minkowskian solution

We insert the ansatz (29) into the vacuum Einstein field equations (12, 13) i.e. with
ταβ = c4/(16πG)Λαβ , and we equate term by term the factors of the successive powers of our
book-keeping parameter G. We get an infinite set of equations for each of the hαβn ’s: ∀n ≥ 2,

2hαβn = Λαβn [h1, h2, . . . , hn−1], (30)
∂µh

αµ
n = 0. (31)

The right-hand side of the wave equation (30) is obtained from inserting the previous iterations,
up to the order n − 1, into the gravitational source term. In more details, the series of
equations (30) reads

2hαβ2 = Nαβ [h1, h1], (32)

2hαβ3 = Mαβ [h1, h1, h1] +Nαβ [h1, h2] +Nαβ [h2, h1], (33)

2hαβ4 = Lαβ [h1, h1, h1, h1]
+Mαβ [h1, h1, h2] +Mαβ [h1, h2, h1] +Mαβ [h2, h1, h1]
+Nαβ [h2, h2] +Nαβ [h1, h3] +Nαβ [h3, h1]
... (34)

The quadratic, cubic and quartic pieces of Λαβ are defined by Eq. (16).
Let us now proceed by induction. Some n being given, we assume that we succeeded in

constructing, from the linearized coefficient h1, the sequence of post-Minkowskian coefficients
h2, h3, . . ., hn−1, and from this we want to infer the next coefficient hn. The right-hand side
of Eq. (30), Λαβn , is known by induction hypothesis. Thus the problem is that of solving a
wave equation whose source is given. The point is that this wave equation, instead of being
valid everywhere in R3, is correct only outside the matter (r > a), and it makes no sense to
solve it by means of the usual retarded integral. Technically speaking, the right-hand side of
Eq. (30) is composed of the product of many multipole expansions, which are singular at the
origin of the spatial coordinates r = 0, and which make the retarded integral divergent at that
point. This does not mean that there are no solutions to the wave equation, but simply that
the retarded integral does not constitute the appropriate solution in that context.

MoWGLI, IST-2001-33562 12

3.1.1 What one would like to do with the file

The sample document is from an article published by the electronic journal Living Reviews in
Relativity [32]. It is typical of many of the articles on this website, which contain advanced
mathematics; many others contain images and tables. We would like to make the content of
equations, tables, and images searchable. We would like to make the equations semantically
meaningful, so that they can be understood by search engines and algebraic manipulation
programs.

The text of an article is easy to search for words or phrases. Web search engines index
web content and point users at pages that contain the words or phrases that the user wants
to search for. But mathematical content is not so easily found. Unless the author surrounds
the mathematics with text that contains suitable words, a search engine will not locate the
page. Sometimes this would be very unnatural, especially if the search user wants to locate
equations containing certain terms or concepts that are not central to the immediate purpose
of the equation in its context. We would like to enable suitably enhanced search engines to
locate mathematical content.

Equations in Living Reviews are created by their authors in LATEX. LATEX contains many
ambiguities that make it difficult for a machine or search engine to infer from the display of
the equation what the equation really means. For example, a raised superscript following a
letter could be a power, an index value, or just part of the name of a variable. Searching for
mathematical content means resolving such ambiguities. Equations should contain semantic
information.

With such information, it would be possible to map an equation in the journal onto its
representation in an algebraic program like Mathematica or Maple. Indeed, it would be
possible for a browser to be configured to recognise such an equation and allow the reader to
work with it. It would be possible for a suitable search engine to extract all equations with
the desired content and put them into a Maple worksheet for the user to manipulate.

Similar content could be indexed for images or tables, which are usually displayed as images
in Living Reviews articles. A search should be able to locate images of a certain kind or with
a certain content. Tables should carry information about their meaning, not just the meaning
of individual entries.

With these goals in mind, we would like to create standards for indicating semantic content
in the mathematics that is used in our articles, in images of mathematical concepts, and in
tables. We would like to create standard constructs that resolve the ambiguities of LATEX.
We would provide special search methods for accessing this content, either in separate files
linked to the main articles or - at a later stage of our work - in metadata fields in XML right
in the article. Associated with this data would be a representation of the equation in an
unambiguous form, such as OpenMath or content MathML, which would be interpretable by
an algebraic program. These data could be extracted from the document or an index and used
by search engines, individuals searching the website or article, or even readers to gain access
to the content of the inclusions.

3.1.2 What types of content do we need to be representable in MoWGLI?

There are many meaningful symbols in an equation, and many levels of meaning attached to
its content. In MoWGLI we will focus on the meanings most directly associated with the
theme of Living Reviews, namely content in general relativity, astrophysics, and associated
areas. Thus, we will not index for searches any mathematics that is ”standard”. Instead

MoWGLI, IST-2001-33562 13

we will index advanced mathematics, such as differential geometry and tensor calculus, and
physical content such as the Riemann tensor, the Planck law, and so on.

Our equations will, however, have completely unambiguous mathematical representations,
so that they can be understood by algebraic manipulation programs. The resolution of
LATEX ambiguities will require definition of higher LATEX commands (macros) that our au-
thors will use to compose the equations. These macros can, when the article is processed,
place semantic or content information into indices or metadata fields as desired.

3.2 Sample document 2

We present the formal definition of the nth root of a non-negative real number in Coq and our
idea of how it should be presented.

The definition is made in two steps: first, we prove that for every non-negative number c
and positive integer n there exists a number x such that xn = c; then we turn this existential
statement into a function. The Coq code for this piece of mathematics is given below. Some
explanation is in place.

The statement of the lemma reads, in mathematical terms: ∀n : IN.(0 < n) → ∀c :
IR.(0 ≤ c) → ∃x : IR.0 ≤ x ∧ xn = c. Note that the ‘overloading’ of symbols we know from
mathematics, where we write 0 both for the zero of the natural numbers and for the zero
of the reals, is not built in in Coq, where we write (0) and Zero. One can introduce some
overloading (and actually, Zero is a strongly overloaded symbol in our library, representing
‘the’ unit of an arbitrary semi-group), but we haven’t done that for our statement of nth roots.

The part immediately after the statement of the lemma, from Proof until Qed is the ‘Coq
proof’: a list of tactics, entered by the user to interactively guide the Coq system to prove
the lemma, which is then stored under the name nroot. What is actually stored internally in
Coq is not this tactics file (the part from Proof until Qed) but a so called ‘proof-term’ that
was constructed by Coq using this tactics file. This proof-term is a direct encoding of a (very
lengthy and detailed) proof in natural deduction. One can exhibit this proof-term as a term
but also as a natural language proof (which is usually not done, because it’s very long and
detailed, obscuring the real important steps, but that could become feasible once we dispose
of a tool to collapse or expand on demand the subproofs). So to be precise, nroot is defined
as this proof-term.

The Definition root_fun actually defines the nth root function: given four parameters,
a n : nat, a proof of O < n (the argument posn), a c : IR and a proof of 0 ≤ c (the argument
posc), it defines the real number n

√
c as the x for which 0 ≤ x∧ xn = c holds according to the

proof nroot of the lemma.
In Coq, comments are put between (* *). This text is skipped by Coq. In the proof and

definition of nth roots, many previously defined notions (with their own special syntax) and
previously proved properties are used. So actually a mathematical development consists of a
series of Coq files (with dependencies between them) in which a mathematical theory is built
up.

Lemma Set_nrootIR : (n:nat)(lt (0) n)->(c:IR)(Zero[<=]c)->
{x:IR & (Zero [<=] x) * (x[^]n [=] c)}.

Proof.
Intros n n_pos c c_nonneg.

MoWGLI, IST-2001-33562 14

LetTac p := _X_[^]n[-](_C_ c). (* Auxiliary definition *)
Cut (Monic n p). Intro.
Elim (Set_cpoly_pos’ ? p Zero n); Auto.
(* Important theorem application *)
Intro X. Intro H0. Elim H0. Clear H0. Intros H0 H1.
Cut {x:IR & (Zero [<=] x) * ((x [<=] X) * (p!x [=] Zero))}. Intro.
Elim H2. Clear H2. Intro. Intro H2.
Elim H2. Clear H2. Intros H2 H3. Elim H3. Clear H3. Intros.
Exists x. Split. Auto.
Apply cg_inv_unique_2.
Step (_X_!x)[^]n[-](_C_ c)!x.
Step (_X_[^]n)!x[-](_C_ c)!x.
Step_final (_X_[^]n[-](_C_ c))!x.

Apply Set_ivt_poly; Auto. (* Main theorem application *)
Apply monic_apzero with n; Auto.
Unfold p.
Step_leEq_lft (_X_[^]n)!Zero[-](_C_ c)!Zero.
Step_leEq_lft (_X_!Zero)[^]n[-]c.
Step_leEq_lft Zero[^]n[-]c.
Step_leEq_lft Zero[-]c.
Step_leEq_lft [--]c.
Step_leEq_rht [--](Zero::IR). Apply min_resp_leEq. Auto.
Apply less_leEq. Auto.
Unfold p.
Apply Monic_minus with (0).
Apply Degree_le_c_.
Pattern 1 n. Replace n with (mult (1) n).
Apply Monic_nexp.
Apply Monic_x_.
Auto with arith.
Auto.
Qed.

Definition nroot_fun
[n:nat; posn:(lt O n); c:IR; posc:(Zero [<=] c)] : IR :=
(projS1 ? ? (nroot c n posc posn)).

Theorem For every positive integer n and non-negative real number c there exists
a real number x such that xn = c.

Proof Let p be the polynomial defined by

p(y) = yn − c.

This polynomial is monic, so we know that there exists a real number X such that
0 ≤ p(X).

Also, p(0) ≤ 0, so, by the Intermediate Value Theorem for polynomials, we know

MoWGLI, IST-2001-33562 15

that there exists a real number x ∈ [0, X] such that p(x) = 0. This number also
satisfies xn = c.

The number x is then called the nth-root of c. QED.

It should be possible to generate an approximation of this text automatically from the
Coq source2, eventually guided by information included in comments in the Coq file. In the
example, we have highlighted the important mathematical steps which we want to single out;
the other parts of the proof are basically verifications of side conditions. We single out some
important high-level aspects.

How do you produce this document? If you want to have completely formal content,
you should start from a formal file. So, the document is produced by first creating a Coq file,
where the user enters (most likely as Coq comments) information to guide the presentation.
This also implies that the (mathematical) text above is seen as a view of the formal document
(the Coq file with additional presentation information). This view is produced by taking the
formal document (with additional presentation information) and generating a printable (ps
or pdf) or web document (HTML). In the generation of this view, we see MoWGLI as an
intermediate level: first we generate a MoWGLI document, consisting of file in a certain
XML language and from this the other documents are generated in a canonical way.

How can MoWGLI help to write the document? As stated above, we see the Coq
files with presentation information being created interactively using Coq, possibly with an ed-
itor/interface like Proof General or PCoq. Communicating with Coq from the nice MoWGLI

output (e.g. within a web browser) would be perfect but also far too hard a problem to address
right now. What one could use MoWGLI for, while creating the Coq file, are the following
two things:

• Search for mathematical content in the library. The search facilities in PCoq are rela-
tively restricted and the ones in emacs are just string searches. A tool exists in Coq to
retrieve statements up to isomorphism (for instance up to the commutativity of A ∧B)
but more various ‘content-based’ searching tools would be profitable. String search
may be profitable too but needs a discipline and somehow a standard usage on the
way to name mathematical notions, properties and lemmas (alternatively: needs to rec-
ognize synonym notions, such as symmetrical/commutative, antonym notions, such as
lesser/greater-or-equal, abbreviations such as sym for symmetry, order of words such
as plus sym/sym plus; also: to have both a full description and a key identifier for all
notions such as “right associativity of addition on natural numbers”/plus assoc l)

• Present existing Coq files in a ‘mathematical way’ (as indicated above), to make it easier
for the user to keep an overview of what’s there. This could comprise the file that the
user is presently working on, if the rendering can be done on the fly. It should be noted

2This proof script is a nice example of how a “good” proof-script should be written by a well-educated
Coq user interested in rendering problems. However, the typical user who is usually only concerned with the
existence of a proof produces scripts that lack much information that can not be retrieved without the help
of the system itself. For example, Intros H0 H1. can be simply replaced with Intros., leaving to Coq the
burden of choosing the name of the two hypotheses. Understanding those scripts without replaying them in
Coq is hardly possible.

MoWGLI, IST-2001-33562 16

that, if one really wants to use the MoWGLI output while creating a Coq file, it should
be possible to get access (through the MoWGLI output) to the underlying Coq files,
to know the precise names of things, the order in which things are instantiated etc.

How does one use the files? The files should be usable for both didactical and research
purposes. In the first case, a different view might be chosen then in the second case. Also,
different people might choose a different view, depending on their preferences. As stated
above, the files should mainly be usable by (1) other developers who want to build on top
of the present Coq theory development (2) students or researchers interested in the subject
who want to get an impression of the specific piece of mathematics (3) users interested in
understanding all the formal steps of the proof, either because they are implementors of Coq
willing to understand the output of the tactics they have written or because an interesting
part of the development consists in the formal details (e.g. study of paradoxes in type-theory).

3.2.1 What one would like to do with the files

Going back to the mathematical piece of text, given above, we describe what we would like
the MoWGLI representation to allow for.

• Inspection of definitions like “real number” and “monic polynomial”. This does not
always mean that we want to see the full definition of a notion, because we are often more
interested in its (basic) properties instead. For example, we probably don’t want to know
the definition of real number, but instead see that they form a complete ordered field
with the Archimedian property. This gives rise to various levels of detail (‘descriptive
layers’) in which one might want to inspect defined notions.

• Retrieval of information about the lemmas used: what is the statement of the Interme-
diate Value Theorem for polynomials? How were the free variables instantiated? What
side conditions were generated and how were they dealt with?

• Inspection of parts of the reasoning that are hidden, e.g. that every monic polynomial
is at some point greater than any given value. Here as well there are various levels of
detail in which one can inspect this. These descriptive layers now provide a refinement
of the proof.

• Access to other documents which contain relevant information for this piece of mathe-
matics: properties of natural numbers, real numbers, polynomials, monic polynomials;
the Intermediate Value Theorem, other variants/corollaries of this theorem. . .

• The user who is developing proofs may want to look at the Coq script to see how a
particular lemma was used. This should be possible both in a frozen and in an interactive
way, that is, where the user points/clicks somewhere in the proof and the relevant portion
of Coq code is highlighted.

• Keeping also in mind that this is a constructive proof and that Coq has the capacity
of extracting programs from proofs, the user should also be allowed to use the program
associated to this proof and the corresponding definition; or, alternatively (and perhaps
preferably), (s)he should be able to comunicate with a computer algebra system that
would output the relevant result.

MoWGLI, IST-2001-33562 17

3.2.2 What types of content do we need to be representable in MoWGLI?

• Formal properties of mathematical notions in various layers of detail. These should be
present in such a way that one can easily inspect a deeper layer. For example, a math-
ematical expression is tagged with an explanation, which again contains mathematical
expressions that again have explanatory tags.

• Mathematical proofs on various levels of detail, to be used to generate different views of
the document. These consist of textual components and mathematical expressions.

• The two mentioned above require the support to encode text interleaved with mathe-
matical expressions (formulas).

• Meta-information about the notions involved: in what contexts is the information about
nth-roots relevant? What other concepts does it require? If a user developing a proof
asks for relevant information, when should properties of nth-roots be considered relevant?
If a user searching the library for results in specific areas, which keywords should be
associated with these lemmas?

• Document-structure, like proofs, examples, remarks but also on a higher level: sections
and chapters.

3.3 Sample document 3

3.3.1 Security evaluation of IT products

The fourth application scenario is the evaluation of Information Technology (IT) products
following the Common Criteria (CC) standard for security evaluations. The Common Criteria
is an ISO standard resulting from the unification of previous European, Canadian and United
States standards .

A security evaluation following the CC standard involves three main actors. The Developer
is the one who conceived, designed and implemented the IT product. The Developer may ask
to start an evaluation procedure of the product to an authorised Evaluator. The Evaluator
checks that the IT product meets the requirements that have been specified by the Developer
and judges the pertinence of those requirements. Finally, the Evaluator submits a report to
the Verification Authority of the country, who checks that the rules of the evaluation process
have been respected and decides to deliver or not a security certification for the product.
The Common Criteria specifies the documentation to be provided by the Developer to the
Evaluator and the points to be checked by the latter [25]; provides a catalog of requirements
for security functions [26]; and states different assurance measures on the way of developing
programs, testing the product, writing associated documentation, managing configurations,
and so on [27].

The Common Criteria considers seven assurance levels, EAL1 being the weakest, and
EAL7 the strongest. In level EAL5, the Developer shall include a mathematical description
of the security model to be enforced by the product. In level EAL7, the specification and
design of the product shall also be modelled. Moreover, a proof of refinement correspondence
(RCR) is required between the refinement levels considered in the development of the product
(functional specification, high level design, low level design, implementation). Evaluating a
IT product may thus involve the development of mathematical models and proofs by the
Developer, and its explanation in an appropriate format to the Evaluator.

MoWGLI, IST-2001-33562 18

3.3.2 Documents involved in the evaluation procedure

Usually, the input provided by the Developer to the Evaluator consists in a collection of
documents of different kinds.

The Security Target. First of all, the Developer shall provide a Security Target. This
document describes the security threats to be countered, the objectives that contribute to
counter the specified threats, and the requirements met by the security functions of the product
in order to achieve those objectives. An example of a security requirement for an IT product
is the enforcement of a security policy. A security policy is a collection of rules specifying
the conditions to be fulfilled by the subjects (for instance, users) for executing an operation
controlled by the policy on a given piece of data (for instance, whether an user has the right
to read the contents of a Unix file). Such rules can be seen as an informal description of a
mathematical object, namely, a ternary relation between subjects, controlled operations and
accessed objects.

Formal Security models. In high assurance levels (EAL5 to EAL7), the Developer shall
produce documents describing the formal security policy model (SM) to be enforced by the
product. In Trusted Logic, those models are developed using the Coq proof assistant [28].
Typically, a TSP model consists in a collection of state machines and a set of security properties
expressed in terms of those machines. The transition rules of the state machines can be seen
as a complete formal account of the security policy rules that are informally described in
the Security Target document. Similarly, the invariants are a formalisation of the security
objectives fixed in that document. The CC standard requires the Developer to support the
formal, mathematical definitions of the model with explanatory, informal prose. The SM
documentation hence alternates English paragraphs explaining modelling choices and intended
meanings, the display of Coq definitions (of inductive sets and predicates, functions, etc), and
references to other IT and CC documents.

The following paragraphs are a sample of that kind of document, taken from the security
model developed in Trusted Logic for the Java Card Virtual Machine:

MoWGLI, IST-2001-33562 19

JCVM document sample

Runtime Data Areas

Runtime Data Areas are defined in [JCVM] (section 3.5) as “data areas used during execution of a
program”. Furthermore, “some of these data areas are created on Java virtual machine start-up and
are destroyed only when the Java virtual machine exists”. As stated in [JCVM] (section 3.3) : “any
runtime data area in the Java Virtual Machine which is duplicated on a per-thread basis will have only
one global copy in the Java Card virtual machine”.
The runtime data areas of the JCVM are:

• its execution status, which indicates whether the JCVM is running or not and if not why it is
stopped,

• its Heap,

• its static fields (or static variables).

Hence the following formal definition:

Record jcvm_state : Set :=
JCVM_State
{state_execution_status : jcvm_execution_status;
state_heap : jcvm_heap;
state_field_images : static_field_images
}.

The next sections analyse in detail each part of the jcvm_state structure.

Execution Status

The execution status of the JCVM may be one of the following:

• running normally, with an execution state given by a stack of frames,

• stopped normally, with an empty stack of frames and possibly with a return value,

• stopped with some uncaught exception,

• stopped with some fatal error.

The jcvm_execution_status type is defined as the following union type:

Inductive jcvm_execution_status : Set :=
Frame_Stack : jcvm_frame_stack -> jcvm_execution_status

| Return_Value : (option data) -> jcvm_execution_status
| Uncaught_Exception : reference -> jcvm_execution_status
| JCVM_Fatal_Error : jcvm_execution_status.

Program development. In the EAL7 assurance level, the Developer shall also ensure that
the security mechanisms can be traced through the different representation levels, and relate
the functional specification of each component of the product to the formal security model.
This means that the functional specification (FSP) and high level design (HLD) of the software

MoWGLI, IST-2001-33562 20

parts of the IT product shall be formally developed. In Trusted Logic, the FSP and HLD
levels are also developed using the Coq proof assistant. FSP is presented in the form of pre-
conditions (i.e., mathematical properties) to be fulfilled by the input of the programs, and
post-conditions (i.e., a mathematical relation) relating them to the output produced by the
program. The HLD is described modelling each component of the program as a mathematical
function mapping the input to the output of the component.

The contents of this kind of document alternates modelling choices explained as English
prose with documentation about the Coq modules describing the HLD of the product, the
dependencies between the modules, their interfaces, comments on the Coq code, etc. A possible
model that could inspire this kind of document in the MoWGLI project is provided by the
JavaDoc tool for documenting Java programs [30]. Some efforts in this direction has been
independently carried out by the HELM project at the University of Bologna and by Jean-
Christophe Filliatre at INRIA.

Proof documents. EAL7 level also requires to formally prove that HLD functions actually
realize the functional specification, that is, a proof of refinement correspondence between the
FSP and HLD level. In addition to this, the Developer shall also formally prove what is the
specific contribution claimed for each component to the security model. This last kind of
document usually alternates English explanations with mathematical proofs like the ones that
can be found in a Mathematics or Computer Science article.

3.3.3 What one would like to do with the files

The MoWGLI representation of those documents shall be oriented to the persons embodying
the different roles of a security evaluation of an IT product following the Common Criteria
standard (Developer, Evaluator, Evaluation Authority).

The documents shall support the idea of an active evaluation of the documents, by oppo-
sition of a passive, sequential reading of them, where the Evaluator is mostly limited to just
follow the presentation order proposed by the Developer, and focus on what this latter one
puts forward or highlights.

An active evaluation shall enable the Evaluator to zoom the level of detail of the definitions
and proofs of the document, for instance by unfolding a complex definition of an inductive
predicate in Coq, or by displaying the definition associated to a name used in another defini-
tion. On the other hand, the Developer of the document shall be able to provide a default view
of a huge definition where some parts of it are folded, so that the attention of the Evaluator
is paid on the important parts of the definition. Contrary to unstructured documents, this
default view should not prevent the Evaluator to display and inspect the whole definition if
she likes.

The documents should also help the Evaluator to trace a given functionality from the
Security Target to the implementation level through the different refinement levels involved in
its development (threats, security objectives, security function requirements, formal security
model, functional specification, high level design of the components, etc). Presently, this
is done using a sequence of association tables, one mapping each threat to some security
objective, a second one mapping each objective to some security function requirement, and so
on. The introduction of hyperlinks and structure in the documents should make this technique
obsolete.

MoWGLI, IST-2001-33562 21

The documentation shall also enable to search and retrieve information from it more easily.
For instance, if the formal security model of the product relays on some non demonstrated
Coq axiom, the document should enable the Evaluator to easily find if some important result
claimed by the Developer depends on that axiom. Similarly, it should enable to retrieve all
the parts of the documentation which are related to a particular security mechanism, from the
Security Target document to implementation ones. Remark that the traditional, sequential
order of the document is usually oriented by pedagogical purposes, and not for such traversal
views of it.

Finally, as a long-term goal, the markings used to describe the mathematical structures
included in CC evaluation documents could be also used to communicate between the persons
and software tools involved in the different steps of the development of the IT product. This
particularly concerns Coq and the tools included in Trusted Logic CCC suite: TL-CC, TL-FIT,
TL-CAT. TL-CC is an editor oriented to writing Security Targets and Protection Profiles. TL-
FIT is an UML-based CASE tool customised for the development of software compliant with
the CC requirements. TL-CAT is a tool for automatic generation of test scripts from a formal
specification of the expected product behaviour. In an ideal future environment, it could be
expected that, say, the security policy rules included in the Security Target generated by TL-
CC could be put in relation with the formal specification to be used by TL-CAT. Similarly, the
structure of the data model, described in TL-FIT documents in the form of UML diagrams,
could be used as a starting canvas for building a Coq model of it. In all this examples, the
documents generated by the tools would be both used as an output for humans and as an
intermediate format to communicate between software engineering tools.

3.3.4 What types of content do we need to be representable in MoWGLI?

In principle, three kind of documents are involved in an EAL7 evaluation: CC security targets,
documents supporting formal models, documents supporting formal proofs, and documents
supporting formal program development.

The contents of the a Security Target have been precised in [25]. A first Document Type
Definition (DTD) of that language has been developed by Trusted Logic, but is still to be
enriched. In particular, the grammar for describing security policy rules is an issue that could
be addressed in MoWGLI.

The basic requirements on contents for documents concerning the support of formal models
are very close to the ones concerning the formalisation of Mathematics in Coq (see Section
3.2.2):

• In-place folding and unfolding of Coq terms and definitions. In particular, it would
be interesting to be able to display the definition of an inductive predicate and its
introduction rules so that only the premises and conclusion of a particular introduction
rule are visible, the other introduction rules being folded. The folded rules can be
unfolded by the reader if necessary, since the document contains the structure of the
whole definition.

• Glossary of all the Coq modules and Coq definitions of the model.

• The various dependency relations between different kinds of Coq entities, like for in-
stance:

– An identifier and its definition.

MoWGLI, IST-2001-33562 22

– A mathematical object and its type.
– All the Coq modules required by the definitions in the document,
– The lemmata used in a proof (not every constant, but just lemmata).
– The axioms that a proof (directly or indirectly) relays on.
– Definitions exported by a Coq module (that is, used in another Coq modules of the

model that is being documented).

Beyond the interest they have in themselves, all these dependencies also provide search
domains that can be used in order to simplify information retrieval.

• Specific information concerning CC requirements and the IT product being modelled.
Examples of this associations are :

– The security requirement in the Security Target document that a particular defi-
nition is intended to fulfil. For instance, an inductive predicate may be the formal
counterpart of the informal rules of a security policy described in the Security
Target.

– The specific CC component (TSP model, FSP, HLD, RCR, etc) associated to a
formal definition.

– The informal source that inspired the definition. Usually, formal models are con-
structed from an informal description of the IT product, like user manuals, informal
specification documents. In that case, it is useful to place a reference to the section
or page in the informal document.

All these cross-related references are intended to provide a traceability of the different
functionalities of the product along the documentation.

• As most of the models are based on the use of transition systems and abstract state
machines, special support and notation for that kind of mathematical notions could be
helpful.

Development oriented documents. Those documents oriented to the functional specifi-
cation and the high level design of the IT product meet almost the same requirements than
those supporting formal models, but they are rather oriented to programmers and implemen-
tation specialists. In particular, the syntax of the Coq specification language shall be oriented
to that public. For example, a programming language notation for functions, like short
f(short x);{ return x}, may be preferred to a more traditional mathematical notation for
the same object, like λx : short · x. Beyond the presentation purposes, it could be useful
that the documents records the structure of the program, and not only the Coq term. For
instance, some imperative programming language features (like exceptions, or assignment of
records) may be encoded in Coq’s programming language. Moreover, it is easy to introduce
some notation to make this encoding transparent for the user of Coq. It is important that the
associated document contains the structure of the program as the user typed it, and not its
internal encoding.

The CC standard require for those documents that they clearly describe the structure of
the product in terms of systems and sub-systems (ie, module structure) and interfaces of those
systems [27, Section 10]. The document shall reflect the structure of those systems and their
interfaces.

MoWGLI, IST-2001-33562 23

Refinement correspondence documents. Finally, documents describing proofs of cor-
respondence shall at least contain a clear statement of the correspondence theorems that are
intended to be described, a justification of the hypotheses and pre-conditions restricting the
cases where the conclusion hold, the axioms or unrefined results the theorem relays on, the
relevant lemmata used in its proof, and an explanation of the proof itself in English for a
reasonable level of detail.

3.3.5 Some general requirements

As a potential end-user of the tools developed in the MoWGLI project, Trusted Logic expects
those tools to be modular and maintainable.

By modular we understand the opposite to having a monolithic, single document: the
vision of a document as composed by (potentially reusable) sub-documents should be always
enforced. In particular, if a document is automatically generated from some input (an an-
notated Coq file, for instance), it shall be always possible and easy to compose it with other
pieces of text that have been already written (for instance, a general introduction about the
product and its features).

By maintainable we mean that software documents are not intended to be written once
and forever, but usually evolve in time, accompanying specifications. This is an important
difference with respect to ”pure” mathematical documents, where a theorem is proven only
once. In industry, when a new version of the IT product is delivered, it is important not to re-
start documentation from scratch. This requirement is particularly important when designing
tools that automatically generate (part of) the documentation associated to a product. If a
small change in the source models entails a heavy post-generation edition of automatically
generated documents, then automatic tools risk not to be usable in practice.

Finally, another important issue is the coherence between the Coq model and its docu-
mentation. By coherence we mean that any definition displayed in the documentation must
exactly correspond to the definition in the model. This means that, when some definition
in the model is modified, so must be done with all the documents where the definition is
displayed. Another property related to coherence is the absence of hanged references in the
documentation (for instance, to some Coq constant in the model which does not longer exists).
Any tool supporting the generation of documentation should take those coherence problems
into account.

3.4 Discussion

Every kind of document considered has its peculiar requirements that will probably induce
the choice of a domain-specific markup (that a priori does not exclude the possibility of using
an extensible common framework). The goal is to provide generic tools for the required func-
tionalities that can smoothly work on any document for which the functionality is meaningful.

For example, the need for a search at the content level for mathematical expressions is
shared by the three scenarios. We shall develop a unified way of allowing users to query
mathematical databases or libraries, of any kind. Our solution should be general enough and
flexible enough to return mathematical equations (in a format chosen by the user), proofs,
definitions, whatever. It should basically be an API (application programming interface) that
could be implemented in a variety of ways. A web publisher could, for example, provide a
graphical search interface that hides the complexity of the query language behind user-friendly

MoWGLI, IST-2001-33562 24

buttons and options, in the end composing a query to the search engine. Other websites could
do their own implementations that may look very different. Similarly, the way the website
does the search in response to the query would be very document dependent. The query
language itself can be something the whole community agree on and share.

Another example is the common need for high-quality rendering of presentational expres-
sions derived by the corresponding content markup. The mechanism to obtain the presentation
markup from the content markup must be flexible and modular, because the content markup
is extensible.

An example of domain specific requirement, instead, is the possibility of interacting with
proof-assistants, which, at present, is likely to play no role for the major part of the authors
of mathematical documents.

Thus we need a markup generic enough to support the generic functionalities needed by the
whole mathematical community without forbidding the domain specific ones. In particular, it
should satisfy the following properties:

• It must be extensible, in the sense that it must be possible to encode new notions.

• It must support the operation of semantic refinement, which consist in the possibility to
associate to every mathematical operator or notion a more refined semantics, possibly
specified in a lower-level markup. This naturally leads to the overloading of symbols.
For example we can have just one symbol for the implication, whose semantics may
be refined in each occurrence accordingly to the nature of the implication (classical,
intuitionistic, linear, . . .). Semantic refinement is also useful when the notion already
has a definition in the language we are considering: in this case semantic refinement
may have a foundational meaning. For example we can override the usual definition of
the square root of a number as a partial function that associates to x the unique c such
that c2 = x (if it exists) with that of a total function that associates to x and to a proof
of x > 0 its square root.

• When we map one expression from a markup to another one (for example from content to
presentation markup), we need to be able to identify the source fragment that is mapped
to some target expression. We can do that associating to those target expressions back-
ward pointers in the source expression. These references have a totally different meaning
with respect to the ones we have for semantic refinement. For example, we can associate
to the symbol + in the expression 2 + 3 both a pointer to the content markup element
of the sum of two numbers and another pointer to the definition of the sum (semantic
refinement).

• Generating presentation markup by means of simple stylesheet applications. It should
be relatively easy for a mathematical author (who uses, say TeX) to add presentation
information. For this we should create a collection of standard stylesheets that can be
fine tuned by the author for specific desires.

• Have text interleaved with mathematical expressions, where parts of the text may refer
(via a tag) to mathematical expressions (giving e.g. a precise definition) and a math-
ematical expression may refer (via a tag) to a piece of text (giving e.g. an intuitive
explanation).

• Create a high-level document structure, ranging from ‘examples’, ‘proofs’ etcetera to
‘sections’ and ‘chapters’.

MoWGLI, IST-2001-33562 25

• Support the possibility of enhanced content queries. These should factorise out purely
presentational distinctions, such as names of bound variables inside an expression. (If
we search

∫ b
a

1
x2+1

dx we should also find
∫ b
a

1
y2+1

dy.)

MoWGLI, IST-2001-33562 26

4 Standard Languages for Mathematical Knowledge Repre-
sentation

The section is meant to give an overview of the current (XML) “standards” for markup of
mathematical documents.

4.1 The Mathematical Markup Language

The Mathematical Markup Language (MathML) [37] is the W3C Standard which provides a
specific encoding for mathematical expressions on the Web, capturing both their content and
notation structure.

MathML 2.0 consists of approximately 180 markup elements with their attributes, which
can be divided into two major categories: the presentation markup and the content markup.

Both MathML presentation and content markup reflects the recursive structure of mathe-
matical expressions. A MathML expression can be regarded as a tree, where an internal node
corresponds to a MathML element, the child nodes are the constituent MathML elements of
the parent one, and leaves correspond to MathML atomic elements.

Content elements have a default presentation, but MathML provides also mechanisms to
associate both encodings in order to specify both the layout and the intended meaning of a
mathematical expression.

4.1.1 Presentation elements

One of the main interest of MathML is that it is recommended by W3C as the standard to
enable mathematics to be published on the Web, just as HTML does for texts, and it is likely
to be supported by most browsers starting from the to be released Mozilla 1.0 and Netscape
7.

Presentation elements express both the two-dimensional layout and the structure of math-
ematical notation, being also capable of high-quality rendering.

MathML presentation markup consists of about 30 elements which accept over 50 at-
tributes. These elements are roughly divided into two classes.
Token elements, say the leaves of a presentation expression tree, represent identifiers (mi),
numbers (mn), operators (mo), and string literals (say text and whitespace).
Layout schemata, say the internal nodes of a presentation expression tree, can have only
elements as content and correspond to two-dimensional notational devices. They build an
expression specifying how to construct it by means of its subexpressions. There are several
classes of layout schemata. One group of elements focuses on more general layout (such as mrow
for grouping subexpressions), another group is concerned with scripts (such as multiscripts)
and finally a third group which deals with tables (such as mtable).
There are also a few empty elements used only in conjunction with certain layout schemata.

Note that presentation markup, as well as content, is not intended to be edited by hand,
but by automatic means or suitable editing tools.

4.1.2 Content elements

The content markup provides an explicit encoding of the underlying meaning of a mathemat-
ical expression.

MoWGLI, IST-2001-33562 27

MathML provides a base set of content elements for encoding most of the formulas used
from Kindergarten to the end of high school and the first two years of college, that is up to a
A-Level or Baccalaureate level in Europe.

Content markup consists of about 150 elements accepting a dozen attributes.
The majority of these elements are empty elements corresponding to a wide variety of com-
mon mathematical operators, relations and functions3. These elements together with token
elements representing symbols (csymbol), identifiers (ci) and numbers (cn), correspond to
the leaves of a content expression tree.
A group of elements, such as matrix and set, is used to encode various mathematical data
types, and another, important category of content elements such as apply are used to build
mathematical expressions and also to construct new mathematical objects from others.
Constructing a mathematical expression essentially corresponds to apply an operator, pre-
defined by MathML or user-defined via the csymbol element, to sub-expressions.
These elements correspond to the internal nodes of a content expression tree.

MathML provides a precise semantics for its content elements relatively to standard
mathematical theories. E.g. the <plus/> element defaults to the addition on real numbers (a
notion not formally defined, actually just an informal reference to a “standard” axiomatisation
of real numbers). By use of attributes, a content element can get a different meaning. E.g.
attributes type="integer" turns <plus/> into the addition on integer numbers. A mean-
ing not provided as part of the standard definition of MathML can be given through the
definitionURL attribute.

The set of mathematical meaning that MathML (version 2.1) provides is limited. For
instance, there is no type to express addition on natural numbers or booleans (where addition
can be defined as the ”logical or”). Content elements are subject to properties, but these
properties are sometimes restrictive wrt to the some mathematical field. E.g. the <plus/> is
assumed to enjoy commutativity, which prohibits its use as the (non commutative) addition
on ordinal numbers.

Continuing with the example of <plus/>, it happens that it is not possible to use this
element to denotes, say, an abstract commutative associative law of an arbitrary set, since it
seems there is no way to abstract an MathML expression over an arbitrary algebraic structure
(i.e. only already defined structure are available).

MathML is also concerned only by the extensional properties of the operators (e.g. asso-
ciativity, commutativity, ...) but not on a intensional behaviour as it can only be the case in
any construction of the operators in a formal logic. For instance, naturals in the Coq system
(which implements the “calculus of inductive constructions” formal system) are defined as
the smallest structure build from zero and the successor operation while in the Mizar system
(which implements Tarski-Grothendieck set theory), naturals are defined from the empty set
and the operation of taking the union of a set with its elements. This forbids to use predefined
MathML content elements for the “low-level”, intentional definition of notions as elementary
as the set of natural numbers or the addition on it.

However this does not forbid to use MathML for what it is good at, that is as an exchange
format for well-known standard high school and first two years of college, when the accent is
put on the properties and not on the implementation.

Clearly, this abstraction process between the implementation of a notion and the theory
3Subject areas covered to some extent in MathML are: arithmetic, algebra, logic and relations, calculus and

vector calculus, set theory, sequences and series, elementary classical functions, statistics, linear algebra.

MoWGLI, IST-2001-33562 28

of properties it enjoys is relevant to the formal system. It is up to the specific implementation
system (in our case Coq) to link its constructions with the standard informal mathematical no-
tions (the ones concerning MathML) and to provide enough properties of the implementation
to justify its connection with the basic mathematical standard theories4.

4.1.3 Keeping both Content and Presentation

MathML supplies also mechanisms for combining presentation and content markup by em-
bedding one into the other, or by establishing bindings via so called “semantic mappings”.

The second kind of mixing is provided by the semantics element, which allows to bind
presentation and/or content expressions and subexpressions, even different from MathML, in
the same document. An interesting use of semantics is in connection with cross-references of
the XLink protocol [38].

4.2 OpenMath

In contrast to the very rich language of MathML that defines the meaning of extended presen-
tation primitives, the OpenMath standard [5] builds on an extremely simple kernel (mathe-
matical objects represented by content formulae), and adds an extension mechanism, the so-
called content dictionaries. These are machine-readable specifications of the meaning of the
mathematical concepts expressed by the OpenMath symbols. Just like the library mechanism
of the C programming language, they allow to externalize the definition of extended language
concepts. As a consequence, K-12 need not be part of the OpenMath language, but can be
defined in a set of content dictionaries (see http://www.openmath.org/cdfiles/html/core).
Moreover, OpenMath is purely based on content markup.

The central construct of OpenMath is that of an OpenMath object (OMOBJ), which has
a tree-like representation made up of applications (OMA), binding structures (OMBIND using
OMBVAR to tag the bound variables), variables (OMV) and symbols (OMS). The OMS element carries
attributes cd and name attributes. The name attribute gives the name of the symbol. The cd
attribute specifies content dictionary, a document that defines the meaning of a collection of
symbols including the one referenced by the OMS itself. As variables do not carry a meaning
independent of their local content, OMV only carries a name attribute.

For convenience, OpenMath also provides other basic data types useful in mathematics:
OMI for integers, OMB for byte arrays, OMSTR for strings, and OMF for floating point numbers,
and finally OME for errors. Just like MathML, OpenMath offers an element for annotating
(parts of) formulae with external information (e.g. MathML or LATEX presentation): the
OMATTR5 element, which pairs an OpenMath object with an attribute-value list. To attribute
an OpenMath object, it is embedded as the second child in an OMATTR element. The attribute-
value list is specified by children of the OMATP element, which is the first child, and has an
even number of children: children at even position must be OMS (specifying the attribute), and
children at odd positions are the values of the attributes given by their immediately preceding
siblings.

4which does not exclude more marginal alternative to standard theories, such as so-called non-standard
analysis or constructive analysis (which by the way is actively developed in Coq)

5Note that the meaning of this element is somewhat underdefined, it is stated in the standard, that any
OpenMath compliant application is free to disregard attributions (so they do not have a meaning), but in
practice, they are often used for specifying e.g. type information.

http://www.openmath.org/cdfiles/html/core

MoWGLI, IST-2001-33562 29

The content dictionaries that make up the extension mechanism provided in OpenMath
are tied into the object representation by the cd attribute of the OMS element that specifies
the defining content dictionary.

OpenMath and MathML are well-integrated:

• the core content dictionaries of OpenMath mirror the MathML constructs (see http://
www.openmath.org/cdfiles/html/core); there are converters between the two formats.

• MathML supports the semantics element, that can be used to annotate MathML pre-
sentations of mathematical objects with their OpenMath encoding. Analogously, Open-
Math supports the presentation symbol in the OMATTR element, that can be used for
annotating with MathML presentation.

• OpenMath can provide a semantic encoding format for MathML beyond K-12 mathe-
matics: MathML content supports the csymbol element, which has an attribute definitionURL
that points to a document that defines the meaning of the symbol and that can be an
OpenMath CD. The content of the csymbol element is MathML presentation markup
for the symbol.

4.3 OMDoc

OMDoc extends the MathML and OpenMath standards to encompass mathematical docu-
ments (see [3]). This is suitable for MoWGLI since almost all of mathematics (specifications
and properties of mathematical objects) is currently communicated in document form (publi-
cations, letters, e-mails, talks,. . .). As these documents have a complex structure of their own
(often left implicit by typographic conventions), the specific task to be solved in the extension
to OpenMath is to provide a standardised infrastructure for this as well.

As a consequence, OMDoc provides two sorts of markup devices; for

microstructure of mathematical texts this largely comprises the general pattern “definition,
theorem, proof” that has long been considered paradigmatic of mathematical documents
like textbooks and papers. Furthermore OMDoc supports auxiliary items like explana-
tory text, cross-references, exercises, applets, etc. See [3] for details. In a nutshell,
OMDoc uses specialised XML elements for all of these which may contain text represen-
tations (in form of CMPs) and formal versions (in the form of FMPs) of the mathematical
content.)

macrostructure in terms of mathematical theories. For this, OMDoc techniques from the
field of software engineering (see e.g. [17] for an introduction to algebraic specification),
which focuses around the structured specification of structured formal theories of the
behaviour of software and hardware.

4.3.1 Mathematical Theories in OMDoc

Traditionally, mathematical knowledge has been partitioned into so-called theories, often
centred around certain mathematical objects like groups, fields, or vector spaces. Theories
have been formalised as collections of

• signature declaration (the symbols used in a particular theory, together with optional
typing information).

http://www.openmath.org/cdfiles/html/core
http://www.openmath.org/cdfiles/html/core

MoWGLI, IST-2001-33562 30

<theory id="monoid">. . .
<symbol id="monoid">

<commonname xml:lang="en">monoid</commonname>

<commonname xml:lang="de">Monoid</commonname>

<commonname xml:lang="it">monoide</commonname>

<signature system="simply-typed">

set[any] -> (any -> any -> any) -> any -> bool

</signature>

</symbol>. . .
</theory>

Figure 1: An OMDoc symbol declaration

• axiom (the logical laws defining the theory).

• theorem; these are in fact logically redundant, since they are entailed by the axioms.

In software engineering a closely related concept is known under the label of an (algebraic)
specification, that is used to specify the intended behaviour of programs. There, the concept
of a theory (specification) is much more elaborate to support the structured development of
specifications. Without this structure, real world specifications become unwieldy and unman-
ageable.

OMDoc supports this structured specification of theories; it builds upon the technical no-
tion of a development graph [12], since this supplies a simple set of primitives for structured
specifications and also supports the management of theory change. Furthermore, it is logically
equivalent to a large fragment of the emerging CASL standard [7] for algebraic specification
(see [2]).

All specification languages support mechanisms for specifying signature and axiom infor-
mation, in particular, most also support abstract data type as a convenient shorthand for
sets of inductively defined objects and recursive functions on these. We will subsume these
under the label of simple theories and discuss their representation in OMDoc in the next
section. After that we will use section 4.3.3 to discuss the issue of structuring and reusing
theories by importing material from other theories.

4.3.2 Simple Theories

Theories are specified by the theory element in OMDoc. Since signature and axiom informa-
tion are particular to a given theory, the symbol, definition, and axiom elements must be
contained in a theory as sub-elements.

symbol This element specifies the symbols for mathematical concepts, such as 1 for the natural
number “one”, + for addition, = for equality, or group for the property of being a group.
The symbol element has an id attribute which uniquely identifies it (in an OMDoc
document).

This information is sufficient to allow referring back to this symbol as an OpenMath
symbol. For instance the symbol declaration in 1 gives rise to an OpenMath symbol
that can be referenced as <OMS cd="monoid" name="monoid"/>.

If the document containing this symbol element is stored in a data base system, the
OpenMath symbol could be looked up by its common name. The type information

MoWGLI, IST-2001-33562 31

<theory id="group">

<imports id="group.import" from="monoid" type="global"/>

<axiom><CMP> Every object in

<OMOBJ><OMS cd="monoid" name="set"/></OMOBJ> has an inverse.

</CMP></axiom>

</theory>

Figure 2: A theory of groups based on that of monoids

specified in the signature element characterises a monoid as a three-place predicate
(taking as arguments the base set, the operation and a neutral element).

definition Definitions give meanings to (groups of) symbols (declared in symbol elements
elsewhere) in terms of already defined ones. For example the number 1 can be de-
fined as the successor of 0 (specified by the Peano axioms). Addition is usually defined
recursively, etc.

For a description of abstract data types see [15].

4.3.3 Complex Theories and Inheritance

Not all definitions and axioms need to be explicitly stated in a theory; they can be inherited
from other theories, possibly transported by signature morphism. The inheritance information
is stated in an imports element.

imports This element has a from attribute, which specifies the theory which exports the
formulae.

For instance, given a theory of monoids using the symbols set, op, neut (and axiom
elements stating the associativity, closure, and neutral-element axioms of monoids), a
theory of groups can be given by the theory definition using import (see Fig. 2).

morphism The morphism is a recursively defined function (it is given as a set of recursive
equations using the requation element, described above). It allows to carry out the
import of specifications modulo a certain renaming. With this, we can e.g. define a
theory of rings given as a tuples (R,+, 0,−, ∗, 1) by importing from a group (M, ◦, e, i)
via the morphism {M 7→ R, ◦ 7→ +, e 7→ 0, i 7→ −} and from a monoid (M, ◦, e) via the
morphism {M 7→ R∗, ◦ 7→ ∗, e 7→ 1}, where R∗ is R without 0 (as defined in the theory
of monoids).

MoWGLI, IST-2001-33562 32

5 Authoring

MoWGLI documents will exhibit a strong need for internal consistency, because the same
concepts will appear at different levels: for instance, mathematical operators appear as func-
tions and links to the definitions of these functions may be provided. If a definition is provided,
this definition may state whether the operator is binary, ternary or n-ary. Specific notations
for these operators may also appear in stylesheets or in transformation descriptions given in
XSLT. Producing this kind of documents while ensuring the internal consistency will become a
cumbersome task, unless tools are provided to reduce the amount of information that authors
will need to provide by hand and to compute data such as paths for cross link references.

The scope of the MoWGLI project is already large enough for us to consider several
categories of tools depending on the context in which the authors work. A specific domain
for which available internal consistency will be especially dense is the domain of formalised
mathematics with the help of a proof assistant, where the proof assistant will be used to
check the consistency of documents up to a very precise logical consistency. We discuss this
domain in a first section. The more general working context corresponds to situations where
mathematical formulas are manipulated symbolically with computer algebra systems to help
produce correct formulas more quickly, but justifications are given with informal text. We
discuss the tools for this kind of documents in a second section.

5.1 Authoring in the context of proof assistants

When working with a proof assistant, authors of mathematical documents are led to produce
documents where a lot of details are provided and formally (i.e., mechanically) checked. This
formal documents are usually very verbose and yet very terse and a lot of work is needed
to make them suitable for human reading. In fact we can envision two kinds of activities in
this context, depending on whether the authoring tool is used to create new mathematics or
formalise mathematical proofs that were already studied in an informal way (what we could
call pen-and-paper proofs), or to construct a MoWGLI document from an already complete
formalised proof. Of course, the boundaries between these kinds of activities can be blurred,
but each activity will make it possible to underline a certain category of tools.

5.1.1 Creating new mathematics

The activity of creating new MoWGLI documents should be compared to that of creating
new software, and authoring tools should provide functionalities that are comparable to those
of software engineering tools.

In particular, authors should have the possibility to sketch the structure of their math-
ematical developments in a manner that makes it possible to foresee the main shape of the
final MoWGLI documents. It should be possible to give central concepts and theorems only
by name and informal description first, with the subsequent work concentrating on raising
the level of details and checking the consistency between the requirements and results of each
objects. Requirements for a definition could be that a certain element should be defined
uniquely, requirements for a theorem correspond to its premises.

As the process of raising the level of details progresses, it may be necessary to re-consider
previous design decisions, as one discovers that some theorem cannot be proved under some
set of assumptions or as one discovers that the results being proved are more powerful than
initially foreseen. In these conditions, it should be possible to adapt previous designs in

MoWGLI, IST-2001-33562 33

various ways: evolutionary steps will not all correspond to raising the level of formal detail
and sometimes fragments of correct, but useless, mathematical documents will have to be
dropped to achieve a better design. All decisions should be recorded in a way that they
can be backtracked gracefully, if possible without abandoning unrelated design decisions that
may have occurred later. In all this process, the aim to produce human readable documents
as well as machine readable documents should also be kept in mind and in particular the
main design and the various elements (definitions and theorems) should be annotated as the
design progresses with some informal text (or enriched text, since it should be possible to have
mathematical notations in the middle of the text).

When authors start from a pen-and-paper proof, they are more likely to have a clear
understanding of the main structure of the proof. The need to re-consider the design appears
less often. Still, the capability to associate informal explanations from the paper proof to the
electronic documents should be made available in a strong way.

5.1.2 Putting Formal Mathematics on the Web

Over the last thirty years, semi-automatic proof assistant have developed a mode of operation
where commands are sent one-by-one to a proof assistant that produces some output at each
step to indicate to the user the way definitions are accepted and proofs advance. The results
of this kind of activity usually is a file where the commands produced by the user are recorded,
but not the proof assistant’s output. It is usually easy to check that this file is consistent,
simply by re-running the file through the proof assistant’s command line interface.

In some sense, the proof process is a dialog between a clever actor (the human user) and
a stupid one (the machine) and the file only records the contribution of the clever actor.
The part of the stupid actor is predictable and does not need to be recorded. Still, only a
machine can predict that part, because this process usually requires more memory than what
is available to the common human reader.

When constructing MoWGLI documents, some of the missing information needs to be
re-produced and this activity should be monitored by the human author by adding indications
to the session file that make it possible to produce a new file containing information coming
both from the session file and the corresponding proof assistant’s output.

In the current state of the art, tools are provided by the proof assistant developers to
perform this task, for instance with the tool called coq-tex. This tool actually considers
the user-provided input file as a LATEX source, i.e., a file principally designed to produce a
typesetted document, from which a session file is extracted and the answers to some commands
(earmarked by the user) are inserted in the initial LATEX source.

An orthogonal approach is provided by another tool, named coqdoc [11], where the
user-provided input file still is viewed as a session file, but special comments are used to
insert typesetting or structuring instructions, that can then be used to generate either paper
documents (using LATEX) or a hypertext document. When a hypertext document is created,
links are automatically added to relate identifier usages to definitions. However, no directives
are provided to make sure that some of the proof assistant’s output appears in the final
document.

None of the existing tools actually support a conversion to realistic mathematical notations:
the text that is meant to serve as input to the proof assistant appears as plain text. Therefore
a first simple requirement is that there should exist a tool that combines the capabilities of
coq-tex and coqdoc: include, upon request, outputs from the proof assistant, provide links

MoWGLI, IST-2001-33562 34

from usage to definition; and add realistic mathematical notations.
However, only using session files to describe a mathematical development is insufficient to

produce truly readable documents, since users tend to insert in these session files only the final
result of a mathematical proof developments and main structure of the theory underlying this
development, the links between various concepts are missing in this file. Several ways, can
be provided to recover the structure in a development, very often with the help of systematic
tools to compute the dependencies between various commands or concepts.

The distinction between “natural language” text as informal, user-provided annotation to
some “machine language” text as formal text used as machine input or produced as machine
output should also be blurred by the new capabilities related to natural language processing.
Some of the “natural language” text can actually be produced automatically by the proof
assistant and natural language can also be used as machine input, thanks to the recent progress
observed in the use of natural language as input language for logical tools.

5.2 Authoring in a free context

Working with a proof assistant leads to very precise descriptions of mathematics, but the cost
can be discouragingly high. Authoring tools should also support the production of MoWGLI

documents where less verifications on the logical consistency of mathematics are performed. In
this context, the MoWGLI documents that are being produced still require a large quantity
of work for which automated support can be important. One aspect revolves around the
editing of mathematical formulas, that will be discussed in Sect. 8.6; the other relates to the
task of importing inside MoWGLI documents data produced by other mathematical tools.
One important class of these tools are symbolic computation systems, that play about the
same role as the proof assistants in previous sections. In that case, the directives given by
the user correspond more to the commands to be sent to the logical system to make sure
it produces the relevant data. This data comes in a form that is closer to semantic data
and transformations need to be performed to produce regular content-based descriptions and
presentation descriptions. Here, because data is not provided manually, it is absolutely not
possible to consider that the user should have control on where line breaks should occur
in formulas, because formulas are not part of the user-provided input. This characteristic
underlines the way user guidance for the generation of presentation data should be provided.

For example, symbolic computation tools should include Mathematica and Maple which,
both, contain sufficient space to write complete documents. Advantage should be taken from
their (partial) support for MathML.

MoWGLI, IST-2001-33562 35

6 Stylesheets and Transformation

An important part of the descriptive power of mathematics derives from its ability to represent
formal concepts in a highly evolved, two-dimensional system of symbolic notations. Tools for
the mechanisation of mathematics and the automation of formal reasoning must eventually
face the problem of re-mathematization of the logical, symbolic content of the information,
especially in view of their integration with the World Wide Web. We have already discussed
the pivotal role that XML-technology is likely to play in such an integration, and the new
potentialities offered by languages such as MathML [37] for rendering mathematical notation
on the Web. In this section, we focus on the problem of (Web) publishing, advocating the use
of XSLT stylesheets as a standard, application independent and modular way for associating
notation to formal content.

The Extensible Stylesheet Language, whose Transformation part (XSLT) [39] has recently
become a W3C recommendation is a simple rule-based language for transforming XML doc-
uments into other XML documents. Although the expressive power of XSLT is remarkable,
it was not intended as a completely general-purpose XML transformation language but, pri-
marily, as a mean to specify the styling of an XML document by transforming the specific
XML-dialect of the input document into a formatting language suitable for rendering issues
(HTML, Formatting Objects, or whatever). In MoWGLI, we plan to extensively use XSLT
as a standard mechanism for associating notation to content in mathematical documents (see
[1]). The broad goal, here, is that of developing coherent and well maintained libraries of
notational stylesheets, publicly available on the web and freely reusable by any interested
party.

Stylesheets have been already successfully used for rendering mathematical content by
the OpenMath community. Among others XSL stylesheets for the display of OpenMath

documents in MathML presentation, in plain-html and in TEX are available. The fact that
this rendering is performed using XSL stylesheets makes it extensible and easily modifiable
(the simplicity of the XSL template example in Figure 8 applies here as well) (see for example
the OMDoc or ActiveMath stylesheets for html and LATEX). One of the important purpose
of these modifications are the enrichment with interactivity features such as, in a Web-browser,
the display in the status bar of the name of the symbol being flied over by the mouse. Moreover,
other presentation mechanisms exist, which may perform more efficiently; for example the
RIACA group of the Technical University of Eindhoven have implemented a rendering to
images and a rendering to MathML.

The transformation of a document from the internal representation in some system to its
final rendering essentially goes through four phases: exportation, transformation, presentation,
and rendering. Fig. 3 provides the overall simplified architecture of these phases.

Rendering will be discussed in Section 7, together with the tools required for the manage-
ment of stylesheets. In this section we focus on the first three phases.

The only phase that is application-dependent is the first one. The second phase may depend
on the specific foundational framework used by the application (for proofs and, to a certain
extent, also for statements), but it is already decoupled from the specific application. The
third phase is quite general and can be shared by most systems (especially for the notational
support, which is the most prominent aspect of this phase).

As shown in Fig. 3, there are two main flows of transformations, according to the two
possible outputs, namely theories or individual objects. With theory we mean a collection of
objects, possibly intermixed with text and images, structured into sections, chapters and so

MoWGLI, IST-2001-33562 36

Annotations
Textual

Rendering
Engine

Style
Sheets

Style
Sheets

Inner Types

XML
file

Style
Sheets

HTML
MathML−Presentation

...

Style
Sheets

Proof Objects Proof Objects Proof Objects

Logical
Environment INTERFACES

export

Notation

export

TRANSFORMATION PRESENTATION RENDERINGEXPORTATION

Theory

Metadata

XSL Transformation

Sheets
Style

XML MathML−Content

content_to_html.xsl
mmlextension.xslrootcontent.xsl

theory_pres.xsltheory_cont.xsl

Figure 3: Transformation Phases and main stylesheets

on. The most complex transformation process obviously concerns objects (and its sublevels:
namely propositions, terms and proofs, comprising the required notational support). The
interesting problem regarding theories is their dynamic generation (see Sect. 8.3); once created,
they do not require major transformations, relying on the transformations of the embedded
objects.

We shall now discuss some of the most crucial aspects of the first three phases.

6.1 Export

In the first phase the document is exported to XML. Accordingly to the nature of the system,
the information requires a specialised semantics encoding or can use some standard content
encoding. In particular, Computer Algebra Systems are likely to be able to import and export
to MathML Content or OpenMath and often to use this media as a meaningful communica-
tion format. Indeed, the development of the OpenMath standard went together with the
development of specification and implementation of phrasebooks: wrappers for mathematical
systems which can receive and send OpenMath expressions, possibly enriched with system-
specific commands. Examples of such systems have been developed by WebPearls Inc., by
the PolyMath group in Simon Fraser University (for the Maple computer Algebra system), by
the RIACA group (for the Mathematica and GAP computer algebra systems), and by others.
Nevertheless, experiments with these systems prove that a content-standard that would reflect
faithfully all mathematical systems is barely possible (this applies to both OpenMath and
MathML-content): Maple and Mathematica, for example, disagree on many definitions of
functions branch-points or the floating point algorithms used.

Proof assistants, instead, really requires a semantics encoding that typically makes sense

MoWGLI, IST-2001-33562 37

only for a specific logical system. Embedding the semantics markup into a meta-language as
OpenMath would generate several unrelated content-dictionaries, one for every logical frame-
work, without providing any added value in terms of sharing and communication of data.

In what follows we will focus our attention on exporting information from proof-assistants.
In MoWGLI, this is conceived as a batch process, producing the actual and persistent library
of mathematical documents.

The information encoded in markup should exactly reflect all the internal information of
the application, and not just the information required for rendering purposes. For instance,
this layer could be profitably used as a more convenient format for exchanging formal pieces
of the library on the Web.

The necessity of having a specific description is motivated by the fact that the encoded
information is very different both in content and format from one system to another. A
general purpose language would hardly reflect all the small but essential details of the specific
internal representation of the information within a given logical framework. For instance,
Fig. 4 provides an example of a natural low-level encoding in XML of the expression (n >
O) ∨ (O = n) for the Coq Proof Assistant.

<APPLY>
<MUTIND notype="0" uri="cic:/coq/INIT/Logic/Disjunction/or.ind"/>
<APPLY>
<CONST uri="cic:/coq/INIT/Peano/gt.con"/>
<REL binder="n" value="1"/>
<MUTCONSTRUCT noconstr="1" notype="0" uri="cic:/coq/INIT/Datatypes/nat.ind"/>

</APPLY>
<APPLY>
<MUTIND notype="0" uri="cic:/coq/INIT/Logic/Equality/eq.ind"/>
<MUTIND notype="0" uri="cic:/coq/INIT/Datatypes/nat.ind"/>
<MUTCONSTRUCT noconstr="1" notype="0" uri="cic:/coq/INIT/Datatypes/nat.ind"/>
<REL binder="n" value="1"/>

</APPLY>
</APPLY>

Figure 4: Example of semantic encoding of the expression (n > O) ∨ (O = n) for Coq

The main issues in this phase are to decide which information is worth exporting, to
choose the right granularity of XML documents, and the actual definition of the Document
Type Definition.

An additional problem of this phase is that some of the information required for presen-
tational issues may not be directly available in the internal representation of the application.
For instance, in type-theoretical tools encoding proofs as lambda-terms via the Curry-Howard
analogy, the type of the inner nodes of the proof (which are essential to recover a human-
readable representation of the proof) is typically missing. Thus, while we export the informa-
tion, a tight interaction with the application is usually required.

MoWGLI, IST-2001-33562 38

6.2 Transformation

The second phase is the core of the transformation process. In this phase the document
is transformed, by means of stylesheets, into a suitable intermediate content representation
(a pointer to the formal content is preserved as an XLink [38]). This intermediate level is
meant to improve the modularity of the whole architecture. Many different formal notions,
from the same or even different logical environments, are typically mapped here into the
same intermediate notion. Take for instance the definition of equality, or that of an order
relation: their formal definition may be very different from one system to another (or from a
sub-theory to another), but their intended presentation (and intuitive meaning) is the same.
Therefore, there is no point in defining a specific presentation for each formal notion and we
just define presentation for the intermediate content level, mapping all formal notions into the
corresponding content one, with the intended representation. MathML content looks here as
a promising candidate for the representation of formulae and proofs at this layer; the typical
representation of expression (n > O) ∨ (O = n) in this language is described in Fig.5

<apply>
<or/>
<apply>
<gt/>
<ci>n</ci>
<ci>O</ci>

</apply>
<apply>
<eq/>
<ci>n</ci>
<ci>O</ci>

</apply>
</apply>

Figure 5: MathML content encoding of the expression (n > O) ∨ (O = n)

Note the structural similarity between this representation and that in Fig.4. The similarity
can be enforced by the fact all MathML content elements accept a definitionURL as an
attribute (a fact which is essential when MathML is used as an intermediate language, in
order to preserve a link to the low level, formal representation). For instance, the greater-than
relation is not a primitive notion in Coq: actually, it is a suitable inductive definition. However,
when we pass from Coq to MathML there is no point to preserve this information, if not as a
pointer to its actual definition. So, the application of Coq-gt constant to its pair of arguments
can be directly transformed into an application of MathML-gt element to (the result of the
transformation on) its arguments, automatically recovering the intended presentation. The
templates in Fig.6 captures this idea.

In a similar way, content can be associated to all user defined notions. In case the notion
is not in the primitive set of MathML content, it is enough to create a new csymbol, and
extend the presentation stylesheet with the intended presentation.

We shall also eventually need to develop suitable extensions for the theory and metadata
level (these are really complex tasks, whose discussion will be better detailed in the Report

MoWGLI, IST-2001-33562 39

<xsl:template match="APPLY[CONST[attribute::uri=’cic:/coq/INIT/Peano/gt.con’]
and (count(child::*) = 3)]" >

<m:apply>
<m:gt definitionURL="{CONST/@uri}"/>
<xsl:apply-templates select="*[2]"/>
<xsl:apply-templates select="*[3]"/>
</m:apply>

</xsl:template>

Figure 6: Example of a XSLT template from semantics to content

on “Structure and Metastructure of Mathematical documents”). Moreover, during the trans-
formation phase we must also heavily rework proofs in order to put them in a form more
suitable to human reading. Typically, this requires a major reorganisation of the structure of
the proof (see e.g. [9, 8]): in a proof assistant, proofs are typically generated in a bottom-up
fashion, while we naturally expect a top-down presentation, where subterms (sub-proofs) ap-
pear before conclusions. Another complex issue is that of recognising and managing induction
principles (one of the main proof mechanisms of constructive mathematics and proof assistant
applications). During this phase, proofs must be also typically integrated with redundant
information (such as the intermediate conclusions of the proof-tree, see section 6.1), such as
to obtain a human-readable output.

A different approach has been followed by Caprotti, Geuvers and Oostdijk [22, 6], gener-
ating the natural language rendering off-line, using a tool written in Java; the output is then
included once and for all inside the mathematical document (that is an OMDoc instance).
Even if the initial implementative effort is surely greater, the MoWGLI approach has clear
advantages in terms of user-configurability: changing the natural language output, for example
associating a particular verbalization to an operator or changing the whole output to another
language, just amounts to adding or overriding a few stylesheet templates. Moreover, this can
be done on-the-fly and on a per-user basis.

6.3 Presentation

In the third phase the document is transformed from its intermediate, content representation
to the final presentation format. The representation of (n > O) ∨ (O = n) in the MathML
presentation language is described in Fig.7.

Several stylesheets covering the transformation from MathML content to MathML presen-
tation exist already. For instance, in Fig.8 you may see a fragment of a stylesheet mapping
MathML content to MathML presentation due to Igor Rodionov, of the Computer Science
Department of the University of Western Ontario, London, Canada (the code has been slightly
simplified, for the sake of clarity).

The first template matches any apply element which has an or element as first child. The
template expects to receive in input a parameter called IN_PREC expressing the precedence
of the context (initialised to the variable NO_PREC in case no actual parameter is passed).
Then, two cases are possible, according to the relative precedence of the context w.r.t. the
precedence of operator or (defined by the variable OR_PREC). If IN_PREC > OR_PREC we must
first insert a pair of brackets (<m:mfenced separators="">) using “blanks” as separators,

MoWGLI, IST-2001-33562 40

<mrow>
<mrow>

<mi>n</mi>
<mo>></mo>
<mi>O<mi>

</m:mrow>
<mo>∨<mo>
<mrow>

<mi>O<mi>
<mo>=<mo>
<mi>n</mi>

</mrow>
</mrow>

Figure 7: The expression (n > O) ∨ (O = n) in MathML presentation

and then recursively apply the templates on the same input fragment (select="."), entering
a special mode called “or”. In the other case, we do not need brackets, and just recursively
apply the templates.

The second template is active only in the special mode “or”. We first recursively apply
the templates on the second child of the application (i.e. the first argument of the operator
or) passing OR_PREC as current precedence of the context, and then for each other child at
position > 2 we recursively apply the templates on it, generating <m:mo>∨</m:mo> in
front of each of them (the or operator of MathML takes any number of arguments).

When extending MathML content by means of user defined csymbols, we have just to ex-
tend the previous stylesheet to cover the new cases (and XSLT has a clean inclusion mechanism
to deal with this kind of extensions).

6.4 Stylesheet editing

We will probably need to provide authors with tools to edit the stylesheets used in the trans-
formation and presentation phases. In particular, most of these stylesheets have a very simple
and repetitive structure, opening the possibility of automatically generating them from a more
abstract and concise representation of notational and stylistic information (see [1, 19]). In fact,
the algebraic tradition of mathematics leads to mathematical notations based on few opera-
tors with simple typesetting conventions: infix binary operators like addition or subtraction,
superpositions. For a specific domain of mathematics, it is often the case that authors need
to add an operator, simply using for this operator a new symbol, but display conventions that
mimic that of standard operators.

A similar functionality is already implemented in the Pcoq tool, a graphical interface to
the Coq proof assistant. In Pcoq a table of operators can easily be edited by the user to add
or modify the display conventions associated to a new operator. The graphical user interface
provides a quick way to update the display notations. The resulting tables, however, are not
organised in a way that makes them specific to a given mathematical document and it does
not rely on standard technology such as XML. This should be provided in the context of
MoWGLI.

MoWGLI, IST-2001-33562 41

<xsl:template match = "m:apply[m:or[1]]">
<xsl:param name="IN_PREC" select="$NO_PREC"/>
<xsl:choose>
<xsl:when test="$IN_PREC > $OR_PREC">

<m:mfenced separators="">
<xsl:apply-templates select="." mode="or"/>

</m:mfenced>
</xsl:when>
<xsl:otherwise>

<m:mrow>
<xsl:apply-templates select="." mode="or"/>

</m:mrow>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

<xsl:template match = "m:apply[m:or[1]]" mode="or">
<xsl:apply-templates select="*[2]" mode = "semantics">
<xsl:with-param name="IN_PREC" select="$OR_PREC"/>

</xsl:apply-templates>
<xsl:for-each select = "*[position()>2]">
<m:mo>∨</m:mo>
<xsl:apply-templates select="." mode = "semantics">

<xsl:with-param name="IN_PREC" select="$OR_PREC"/>
</xsl:apply-templates>

</xsl:for-each>
</xsl:template>

Figure 8: From MathML content to MathML presentation

For some specific operations, mathematical notations have a complexity that goes beyond
the available capabilities provided by a simple table mechanism. In these cases, authors need
to produce XSLT template rules, providing pattern information and presentation information
corresponding to the notations they want to adhere to. Pcoq contains the necessary building
blocks to specify the information and to generate the XSLT rule automatically [10]. Specific
support for this activity could involve automatic generation of the pattern part of XSLT
template rules from examples of data representing instances of the new operator and interactive
tools to help constructing the produced text for most frequent styles of layout.

It should be considered whether the expressivity of the OMDoc presentation tags may
be sufficient for these purposes.

MoWGLI, IST-2001-33562 42

7 Rendering tools

We now face the problem of rendering mathematical documents on the Web. In the following
section we provide a quick overview of the presentation languages of interest in this context.
In the following one we discuss the state of the art of MathML presentation engines. Finally
we outline the main requirements for an adequate rendering system for MoWGLI.

7.1 Languages for Scientific Documents

7.1.1 XML-based Languages

The languages in this section have been developed by W3C working groups with the explicit
purpose of providing publishing technologies for the Web. A common characteristic is the
explicit encoding of structure as part of the information conveyed by the document.

• HTML [40] (HyperText Markup Language) is by far the most popular language for Web
page description;

• FO [41] (Formatting Objects) are part of the XSLT specification. They are meant to
provide a generic publishing mechanism for XML documents that is independent of the
rendering device;

• MathML presentation [37] is a rich markup language for the description of the layout of
mathematical formulas;

• SVG [42] (Scalable Vector Graphics) provides a language for the description of diagrams
and complex graphics, possibly supporting animated content and simple interactive ca-
pabilities.

HTML and FO offer very poor support for mathematics by themselves. In fact, one of the key
features of these markup languages is that they allow embedding of so called foreign objects.
For example, it is natural for an HTML document to embed SVG or MathML markup. SVG,
in turn, can embed foreign markup, giving the possibility of creating diagrams with HTML
or MathML annotations and labels. A recent working draft published by the W3C defines a
combined DTD for compound documents using HTML, SVG and MathML [43].

7.1.2 Other Markup-based Languages

The most relevant language in this category is TEX [13], which is by far the most successful
language for typesetting scientific documents in academics. Other languages for typesetting,
like troff, eqn and texinfo are either obsolete, or they are implemented by compilation
into TEX based markup, and can thus be considered equivalent to TEX with respect to their
relevance in the context of MoWGLI.

TEX has been explicitly designed to produce high quality documents on paper; it focuses
on presentational aspects only. These characteristics make TEX (and its macro packages such
as LATEX) unsuitable for many crucial aspects in MoWGLI, where documents

• are supposed to be cross-linked on the Web;

• convey semantical information either directly (by inclusion) or indirectly (by reference
using some machine-understandable mechanism, such as hyperlinks);

MoWGLI, IST-2001-33562 43

• must be deliverable to a variety of rendering devices whose capabilities (resource avail-
ability, rendering quality, support for interactivity) span a wide range.

Nevertheless, TEX can play an important role in the project. First of all it can be seen
as an effective and mature target language for rendering documents in a specific setting.
Furthermore, TEX is a well-established publication language in many conferences and journals.
The possibility of exporting information from the library for inclusion into TEX documents is
particularly important, until alternative technologies for high-quality publication of documents
are available. Finally, XML markup has always been advertised as being human-readable, but
its direct editing is a very tedious task. Markup languages like TEX proved to be sufficiently
friendly so that they could serve, by proper translation and processing, as concrete syntax for
XML documents.

7.1.3 Low-level, Page-description Languages

PostScript [33] and PDF [34] are two very common languages suitable to deliver documents in
a “final form”, usually for printing purposes. They are mostly used as the result of a rendering
process from TEX or XML documents.

PDF, which builds on top of PostScript, has a notion of “object” that enriches documents
with some structure. It also has few, limited interactive capabilities.

The two languages are, however, very much oriented towards a particular medium (the
paper), they are not Web-friendly (even though recently some search engines offer support
for searching inside such documents) and thus not suitable for on-line navigation inside large
repositories of mathematical knowledge.

7.2 Applications for MathML

If we look at the current possibilities for rendering MathML markup, applications fall into
three main categories, described in the following sections6.

7.2.1 Web Browsers

The two Web browsers that currently recognise MathML markup natively are Amaya (http:
//www.w3.org/Amaya/), developed by the W3C, and Mozilla (http://www.mozilla.org),
whose development started after the release of the source code of the Netscape Navigator
browser. Both browsers are available for a number of different platforms, in particular Mi-
crosoft Windows, MacOS 9 and Unix/Linux/MacOS-X. Microsoft has stated no interest to
include MathML support in Internet Explorer, at least in the short term.

For a number of reasons, ranging from irrelevant commercial visibility to the lack of an
appealing user interface, Amaya is not a popular Web browser. In general, it is more regarded
as a prototype for the implementation of W3C technologies and its support for MathML is
limited in both extent and quality. It also lack the implementation of some Web technologies,
like Java applets, JavaScript, application of XSLT stylesheets, that today are a fundamental
component of every real-world browsing application.

Mozilla has recently enabled MathML support by default and version 1.0 is about to be
released. Mozilla is a complex and somewhat cumbersome application whose core engine,

6A comprehensive list of these applications can be found at http://www.w3.org/Math/implementations.

html

http://www.w3.org/Amaya/
http://www.w3.org/Amaya/
http://www.mozilla.org
http://www.w3.org/Math/implementations.html
http://www.w3.org/Math/implementations.html

MoWGLI, IST-2001-33562 44

called Gecko, can be used independently. In fact, there are browsers7 that are built around
Gecko and Netscape uses Mozilla’s source code for its Netscape Navigator Web browser.

This characteristic is relevant since support for MathML inside Gecko automatically implies
support for MathML in every application that is based around it, although Netscape has not
decided a clear policy with respect to MathML yet.

7.2.2 Extensions

By extensions we mean components, such as Java applets or ActiveX controls, that work
together with some hosting application, typically a Web browser, enabling the rendering of
MathML markup embedded in HTML.

The problem of these external components is that they do not integrate seamlessly with the
rest of the document (in many cases they render as inert pictures). That means that uniform
interaction (selection, printing, editing) with the rest of the document is compromised.

The use of such extensions is also platform dependent, and can hinder the diffusion of
markup-languages as each extension usually has a peculiar mechanism to process the markup
to be rendered.

7.2.3 Indirect Rendering

Indirect rendering is the conversion of MathML markup, by means of an XSLT stylesheet
or a dedicated processor, to a different format (TEX or SVG) for which a suitable rendering
engine is available. Examples of such tools are the MathML to SVG converter by Schemasoft
(http://www.schemasoft.com/MathML/) or the MathML to TEX translator developed at the
Ontario Research Centre for Computer Algebra (http://www.orcca.on.ca/MathML/).

In both cases these attempts mainly derive from the lack of high-quality rendering en-
gines for MathML. As such, they can be suitable in the short term, as long as there are not
many implementations available, but we believe that such approaches should be eventually
abandoned.

A particularly severe drawback of the conversion from MathML to SVG is the verbosity of
the resulting SVG markup. This is even more true in those cases where the single characters
in MathML markup are eventually rendered in SVG using spline curves (and not some native
fonts).

7.3 Requirements

An adequate rendering system for MoWGLI must take into account the following aspects:

1. high level of compatibility with the overall architecture, which is based on XML as the
central technology for storing, retrieving and processing mathematical documents;

2. Web-friendliness, intended as the ability of exploiting commonly available (not spe-
cialised) Web services and applications for simple operations (like browsing) in the
repository of information;

3. presentation seen as a vehicle for semantic information, by means of direct inclusion
of, or indirect reference to, content-oriented information corresponding to the rendered
document (or part of it);

7Galeon, see http://galeon.sourceforge.net

http://www.schemasoft.com/MathML/
http://www.orcca.on.ca/MathML/
http://galeon.sourceforge.net

MoWGLI, IST-2001-33562 45

4. independence from the output device used for rendering, but also adaptability to different
environments.

As MoWGLI has a strong commitment to XML technologies and focuses on mathematical
documents, MathML presentation markup, used in conjunction with HTML or Formatting
Objects, is the most natural and appealing candidate meeting these points.

Nevertheless, currently available implementations of MathML are certainly not sufficient.
While current browsing applications can serve the needs of casual users of the library very well,
much of the emphasis of the project is on specialised services for searching operations, retrieval,
assisted authoring and editing of mathematical documents. These activities all require the
development of specific interfaces and applications where rendering and interaction enable
access to the underlying information.

The implementation of a standalone rendering engine for MathML will allow us to develop
specific applications in the context of MoWGLI, and to target the engine to the requirements
of the project.

At this early stage of the project, we can summarise what appear to be important charac-
teristics of such standalone engine:

• fairly complete and robust implementation capable of rendering MathML markup;

• easily embeddable in applications and tools;

• easily usable from different programming languages, as developers of the project will
prefer to work with languages that are suitable to the task to be addressed;

• possibly usable as an extension to current browsing applications, so to enrich the set of
such tools;

• modular and “open”, so to ease its integration with other components designed along
the same lines.

The last point, in particular, suggests that the engine may serve as the starting point for
the development of a modular, component-oriented rendering engine for XML-based markup
languages. This kind of engine could fill the gap between “fat”, monolithic applications (like
Mozilla), and browsers using plug-ins that hinder and constrain integration of foreign markup
within larger documents.

MoWGLI, IST-2001-33562 46

8 Interaction, Editing and Other Dynamic Aspects

Among the great benefits we expect from on-line repositories of mathematics, there is the
possibility of interacting with the so-far static mathematical content. In particular, the more
complex possible form of interaction is WYSIWYG or almost WYSIWYG editing, that we
will address in section 8.6. We now describe the different forms of interaction ordered by
increasing complexity.

8.1 Hypertexts

The easiest form of interaction is the possibility of following an hyperlink. For us, one im-
portant class of links are the links between every occurrence of a concept and its definition.
We believe that adding such a fine-grained hypertext structure to mathematical documents
can really help the reader to understand the content, especially when the reader does not
remember every definition previously introduced in the document or in related documents. In
order to avoid burdening the writer with the insertion of an hyperlink for every occurrence, we
must require some kind of automatization during the editing. Actually no on-line distributed
mathematical document provides so fine-grained hyperlinks. In fact, PostScript does not al-
low hyperlinks at all, XHTML+MathML documents are not yet diffused and we know of no
example of PDF document with that characteristic.

The XML standard technologies to provide links to documents are XLink [38] and XPointer
[44], which can be orthogonally composed with any other XML dialect, in particular MathML
and XHTML. XLink provides a quite complex model for hypertext, comprising multi-directional
links and links between more than two resources. In particular, multi-directional links provide
an added value to simple links, allowing the possibility to require for each concept its list of
occurrences. XPointer, instead, is an extension of XPath to precisely identify the source and
targets of an hyperlink without having to alter the source and target document markup. As
a consequence, it becomes possible to link any point of a third-party document.

All the current widespread browsers already support at least simple XLinks, which are
uni-directional single-target links “à la HTML”. Moreover, there are some solutions [35] that
does not require changes to the browser to extend the implementations to the full XLink
technology. XPointer, instead, is still basically unsupported.

Independently from the available technologies, there is at least another problems to be
solved before fine-grained mathematical hypertext can become a reality: especially in the
realm of formal mathematics we do not usually want to look at all the details of a proof,
especially when we are able to understand a development even without them. How should we
deal with this hidden information when trying to follow an hyperlink?

Let’s examine a small scenario in the realm of implicit coercions, which are conversions
between data-types which are automatically applied by the system and usually hidden to the
user: We have defined both a property on semigroups and an implicit coercion from a ring
to its underling multiplicative semigroup. A user finds an occurrence of the property applied
to a ring, and does not know to which of the two underlying semigroups the property is being
applied. So, he wants to click somewhere to get the definition of the implicit coercion, but no
markup for the implicit coercion is showed! A solution is to give the user the possibility to
ask the browser to show also the coercion. This solution is too naif, because the user can
be confused enough to not suspect the existence of the coercion. Thus, when developing our
interfaces to the library, we must address this problem very carefully.

MoWGLI, IST-2001-33562 47

8.2 Dependency Graphs

Fine grained hypertexts are really useful when trying to understand a single formula or theorem
that is based on something whose definition we do not remember. They do not help much
when we have a big development and we want to understand the global relationship within
the objects.

A user is willing to study the fundamental theorem of algebra, but he realizes that he
does know nothing about ordered fields. Which part of the development will he be unable to
understand? Which other parts must he study before being able to understand ordered fields?
Which parts can he skip?

To answer the above questions, we need two sources of information. The first one is just
meta-information describing the dependencies between parts of the library. This information
is already implicitly stored in the hypertext as the transitive closure of the relation between
an occurrence and its definition. The second one is the user itself, who must provide the
description of his own knowledge.

The net of hyperlinks forms a directed graph of dependencies and the rendering of this
graph provides a useful level of understanding of the global structure of a development. This
approach has been already successfully applied in different situations, as the analysis of the
dependencies between Linux kernel sources8, debian packages9 and Ocaml modules10.

Some tools already exist for the layouting of directed graphs [24], and SVG [42] is the XML-
based standard language for describing vector graphics. Moreover, SVG is so far one of the
XML recommendation with the highest number of implementations, it is natively supported on
the most common browsers and it should interact well with other XML standards as MathML
and XLink [43]. So, the technology for graph rendering is mature enough and we should face
no technological problem here. Nevertheless:

• Especially in the context of mathematics, non-trivial theorems recursively depend on
hundreds of other concepts. So we can not render the whole dependency graph. In any
case, a huge graph will not be informative.

• In particular, the displaying of the part of the graph that describes trivial developments
that are already clear to the user can be especially annoying. More generally, the user
may be interested only in those parts of a development whose structure he has not
understood yet.

• Every user has a different profile, i.e. he knows different things and he considers trivial
different parts of math.

• Some concepts are so closely related that they should probably be collapsed in a single
node of the tree.

The above considerations imply the need to to generate the graphs accordingly to the user
profile. We should also give to the user the possibility of browsing the graph, dynamically
pruning the branches he is not interested in and zooming on the interesting parts.

The kinds of interactions above are not as trivial as following an hyperlink, because they
require the possibility of generating a different document depending on the user input (its

8http://lwn.net/2002/0103/a/hviz.php3
9http://bobo.fuw.edu.pl/cgi-bin/man2html/usr/share/man/man8/apt-cache.8.gz

10http://www.research.att.com/ trevor/ocamldot/

MoWGLI, IST-2001-33562 48

profile) and the possibility of interactively modify an already generated document. In the
next sections we address both these kinds of problems in a more general setting.

8.3 Parametric Documents

A parametric document is a document whose generation may depend on a set of parameters.
Once generated, the document will not be changed by user interactions, unless a new genera-
tion is triggered again. The most part of the documents we are interested in are parametric.
For example, they may depend on

• The required rendering format.

• The browser capabilities.

• The required mathematical notation. Mathematical tradition has developed different
notations for the very same concept and we must allow the reader to choose his preferred
one.

• The level of details required. This is a critical point especially in the realm of formal
mathematics.

• The user knowledge and aims.

• The set of mathematical repositories the user want to have access to.

• The set of service providers the user want to have access to.

Let us define a user-profile as a set of preferences. The main issue we must face is where and
how the user-profile must be stored, and how can it be changed. In particular we must face
some conflicting requirements:

• The user should be able to store its profile locally, so that he can access the library even
if he is off-line.

• The user should be able to store its profile on a well-known server, so that he can use
his settings independently from the host he is using.

• We must have an intuitive interface to set the user-profile and reduce the user-configurable
options as much as possible.

• The system should give the user as much control as possible on the document rendering.

We must also face the problem that the HTTP protocol is basically connectionless. So, if the
user-profile is stored on the client host, it must be sent to the server every time a page is
requested. Moreover, at least part of the user-profile must be sent at least once per session
to the server (e.g. the browser capabilities). Storing the user profile on the server may be
a too centralised solution, especially in the case of multiple service providers that need the
user-profile and that are possibly running on different hosts widespread on the net.

Note that in the previous discussion we have assumed that it is not feasible to generate
a parametric document on the server and instantiate it on the client. In fact, the browser
technology is so quickly evolving and great efforts have been made towards increased stan-
dardisation that we can more and more hope to leave the instantiation to the client. So,
during the development of MoWGLI we will have to monitor this possibility.

MoWGLI, IST-2001-33562 49

One project that is firmly based on parametric mathematical documents is ActiveMath.
The ActiveMath learning environment achieves the generation of content “books” according
to a user-model and to the dependencies of OMDoc items. The original role of the Active-

Math server is that of a learning environment.
It presents OMDoc content on the Web, features an updating user-model, a course gen-

erator, a suggestion mechanism, and interactive exercises connected to mathematical systems.
It is extensively described in [18] and its usage of the knowledge representation is described

in [31].
One of the mechanism to assemble old content in new different ways, i.e. to provide a new

view on the library, relies on table-of-contents which are lists of pointers to content items.
These tables-of-contents can, of course, recreate an existing sequence of OMDoc items. One
of the first re-usability, however, is the ability for a teacher or journal editor to create different
books using new table-of-contents. New books can also be created by the course generator,
a system that chooses the content to be presented following dependencies between items
(encoded in the metadata) and that applies pedagogical rules to choose the necessary items
(according to the user-model) and order them in an appropriate fashion.

The user model is updated with such information as the time the user spends on reading
each item and the performance result on exercises. Though probably less applicable in a math-
ematical research practice, this ability is important as the assessment of the user knowledge
is a tedious and error prone mechanism.

8.4 Semantic Selection

In modern graphical user interfaces, the basic operation to implement complex interactions is
selection. In MoWGLI most parts of the documents have an underlying content or semantic
encoding, and we expect to provide interactions with the underlying content. Thus, we need
a different basic operation, which is semantic selection. Semantic selection means being able
to select a node of the DOM of the content-level or semantic-level document, highlighting its
rendering. The reason for this requirement is that we are often interested in operations that
are meaningful only at the content or semantic level. Some examples are:

• Doing cut&paste towards a computer algebra system, whose input is MathML content
and not MathML presentation.

• Asking for an expression to be simplified.

• Collapsing the parts of a proof we are not interested in.

Semantical selection is a complex task. First of all it requires some machinery to retrieve
the content node that generated a presentation node. One possible solution is to use XLink
to store in the presentation file links to their content sources. Because the mapping from
content to presentation is usually performed by XSLT stylesheets, the latest are responsible
of generating all the links required. Once XLinks are available, we must still constraint the
user to select only a region that corresponds to the rendering of some content node. Note
that, in the general case, a region is not required to be contiguous. Thus selection can not be
performed by the browser alone, but we need a user-defined control logic that must listen for
selection events generated by the browser, choose the candidate region to be highlighted (for
example as the smallest enclosing region which is the image of a content node) and instruct

MoWGLI, IST-2001-33562 50

the browser to select that region. More complex forms of selection could be also useful. For
example, one natural extension is the possibility to select a set of content or semantic nodes.

It may be possible that semantical selection turns out to be not implementable in a reliable
way in some browsers. Moreover, once a node is selected, we must still apply the wanted trans-
formation at the content or semantics level and map it to the corresponding transformation
on the DOM tree. This usually require some interaction with an external service provider that
may be, for example, a computer algebra system or a proof-assistant. This interaction may
be issued by a client-side script or may require something more complex, as a Java applet.
In this case we may consider the possibility of encoding the whole selection logic inside the
applet.

8.5 Dynamic Documents

A Dynamic Document is a document on which we allow interactions that change the document
content without need of generating it again from scratch. The change can be triggered by the
user, by a timer that expires or by another program. In the realm of XML, this corresponds
to alter the DOM [45] tree of the document, triggering DOM events [46] that propagates from
the affected node towards the root of the tree. Listeners can request to be notified when some
events are fired. EcmaScript [29] bindings to the DOM interface are usually available on the
last generation browsers such as Internet Explorer 6 and Mozilla. The available Plug-ins and
ActiveX to render MathML, instead, do not expose the DOM interface of their document.
As a consequence, dynamic documents with MathML parts rendered by means of ActiveX
or Plug-ins are quite hard to develop and become absolutely not-portable. Considering that
under Internet Explorer there is no native MathML support, this may be a big limitation to
the development of active mathematics on the web.

Sometimes the set of instances a dynamic document may have is finite. For example, if we
are showing a proof, we can expect each step of the proof to be shown or to be hidden and
we want to give the possibility to the user to dynamically change the set of hidden steps. In
this case we can simply generate a document in which we record all the different renderings
of the same node, and use a script to control the set of renderings that is currently used. In
all the other cases, we must be able to change only a subset of the content or semantic DOM
and we have to apply the transformations to the new tree to get the parts of the presentation
DOM that must be replaced. When the transformations may be performed only locally, we
can expect the rendering time of the modified fragment only to be sensitively smaller than the
rendering time of the whole document.

8.6 WYSIWYG Editing

Probably the most complex form of interaction is WYSIWYG editing. In the WYSIWYG
(What You See Is What You Get) approach, editing is performed either by inserting new text
in a certain position or by selecting part of the document and performing some action on it.

WYSIWYG editors of mathematical formulas usually are structured editors, where a for-
mula is entered by selecting a hole in it and filling it with a new operator applied to new
holes. The operator to be entered is usually chosen from a palette of operators. This is, for
example, the approach of the MS Word Equation Editor and of its professional edition, that
is the MathType Equation Editor11.

11Design Science MathType, http://www.dessci.com/company/press/releases/oct01.stm

MoWGLI, IST-2001-33562 51

Even if, according to the technical annex of the MoWGLI contract, WYSIWYG editing
is outside the scope of the project, it could be worth implementing some basic support for it.
For example, a user may want to search the library for a particular formula and he should be
provided with a user-friendly interface to enter it. The Java OpenMath Editor12, developed
at UNSA (University of Nice Sophia Antipolis), is such a tool and it’s usability (and its
extension to support dynamic enrichment of symbols) should be evaluated along with several
other projects aiming at the visual edition of semantic mathematical content.

The activity of inserting mathematical formulas in a MoWGLI document should always
privilege forms of input based on content representation, having automatic or semi-automatic
tools to produce presentation data from the content data. The main novel difficulty of content
WYSIWYG editing with respect to traditional presentation WYSIWYG editing lies in seman-
tic selection, as already explained in section 8.4. Edition of semantic markup may, however,
offer more support to the user. The ability to provide types to the parts of the mathematical
object being edited can offer a strong support, for example, in the choice of the symbols that
have to be inserted.

8.6.1 Alternatives to WYSIWYG Editing

The WYSIWYG approach, which is beginner-friendly, is sometimes too cumbersome for ex-
perienced users that usually prefer a non-WYSIWYG editor as TeX or a semi-WYSIWYG
solution where formulas are quickly typed in a textual encoding and they are then rendered
on-the-fly13. Moreover, most of the visual editors and input syntax tend to be non-extensible
(this is the case of MathType Equation Editor) and they usually don’t support semantics
(LyX, TeX, ...).

Domain specific parser, that use concise text for manual input and produce XML content
data from this input, may be a valuable alternative. An example of such tool is the QMath
parser14: its line-based input syntax creates OMDoc documents with OpenMath objects for
formula objects. The QMath syntax for formulas is somewhat close to the Computer Algebra
Systems. Operators and their precedences and function applications are allowed; moreover,
the ability to input any character of the Unicode range allows the use of much more symbols
than what LATEX allows. The input is compact and readable, and can be extended at any
time.

Experience has shown that purely automatic tools to generate presentation data from
content data can sometimes make wrong choices, leading to badly typeset formulas. Means
to let the user guide the typesetting algorithms need to be investigated. One should avoid
a situation (as in LATEX) where the user indicates the precise location of linebreaks, rather
choosing between quick and naive typesetting or clever but complex typesetting.

12The Java OpenMath Editor, JOME, is slightly documented in http://mainline.essi.fr/jome/jome-en.

html
13LyX, http://www.lyx.org/
14The QMath processor is documented at http://www.matracas.org/

http://mainline.essi.fr/jome/jome-en.html
http://mainline.essi.fr/jome/jome-en.html
http://www.matracas.org/

MoWGLI, IST-2001-33562 52

References

[1] Asperti, A., Padovani, I., Sacerdoti Coen, C., and Schena, I., “XML, Stylesheets and
the re-mathematization of Formal Content”, Proceedings of Extreme Markup Languages
2001 Conference, August 12-17, Montréal, Canada.

[2] Autexier, S., Hutter, D., Mantel, H., and Schairer, A., “Towards an evolutionary formal
software-development using CASL”, in Choppy, C., and Bert, D., eds., Proceedings Work-
shop on Algebraic Development Techniques, WADT-99, LNCS 1827. Springer, (2000).

[3] Autexier, S., Hutter, D., Mantel, H., and Schairer, A., “OMDoc: Towards an internet
standard for the administration, distribution and teaching of mathematical knowledge”,
in Roanes Lozano, E., ed., Proceedings of ”Artificial Intelligence and Symbolic Computa-
tion”, LNAI 1930. Springer, (2001).

[4] Borwein, P., Times Higher Education Supplement 1514, 23 November 2001.

[5] Caprotti, O., and Cohen, A.M., “Draft of the Open Math standard. The Open Math
Society”, (1998), http://www.nag.co.uk/projects/OpenMath/omstd/.

[6] Caprotti, O., Geuvers, H., and Oostdijk, M., “Certified and Portable Mathematical Doc-
uments from Formal Context”, Proceedings of the First International Workshop on Math-
ematical Knowledge Management, September 2001.

[7] Language Design Task Group CoFI, Casl — the CoFI algebraic specification language —
summary, version 1.0., (1998). For a related online version see: http://www.brics.dk/
Projects/CoFI.

[8] Coscoy, Y., Explication textuelle de preuves pour le Calcul des Constructions Inductives,
PhD thesis, (Université de Nice-Sophia Antipolis, 2000).

[9] Coscoy, Y., Kahn, G., and Thery, L., Extracting Text from Proofs, (INRIA Sophia An-
tipolis), Report no. RR-2459.

[10] Amerkad A., Bertot Y., Rideau L. and Pottier L., “Mathematics and proof presentation
in Pcoq”, Proceedings of the Workshop Proof Transformation and Presentation and Proof
Complexities (PTP’01), June 2001, Siena, Italy.

[11] Filliatre, J.-C., “CoqDoc: A Documentation Tool for Coq”, http://www.lri.fr/
~filliatr/coqdoc/.

[12] Hutter, D., Reasoning about theories, (Deutsches Forschungszentrum für Künstliche In-
telligenz (DFKI), 1999).

[13] Knuth, D.E., The Tex book, (Addison-Wesley, Reading, MA, USA, 1998).

[14] Kohlhase, M., “OMDoc: An Infrastructure for OpenMath Content Dictionary Informa-
tion”, Bulletin of the ACM Special Interest Group for Algorithmic Mathematics SIGSAM,
(2000).

[15] Kohlhase, M., OmDoc: An open markup format for mathematical documents, (Fachbere-
ich Informatik, Universität des Saarlandes, 2000), Report no. SR-00-02. For a related
online version see: Mathweb, http://www.mathweb.org/omdoc.

http://www.nag.co.uk/projects/OpenMath/omstd/
http://www.brics.dk/Projects/CoFI
http://www.brics.dk/Projects/CoFI
http://www.lri.fr/~filliatr/coqdoc/
http://www.lri.fr/~filliatr/coqdoc/
http://www.mathweb.org/omdoc

MoWGLI, IST-2001-33562 53

[16] Libbrecht, P., Büdenbender, J., Frischauf, A., Goguadze, G., and Ullrich, C., “Presenta-
tion and Re-Use of XML-content in ActiveMath”, unpublished.

[17] Loeckx, J., Ehrig, H.-D., and Wolf, M., Specification of Abstract Data Types, (Teubner,
Chichester, New York, Brisbane, 1996). ISBN: 3-519-02115-3.

[18] Melis, E., Büdenbender, J., Andres, E., Frischauf, A., Goguadze, G., Libbrecht, P., Pollet,
M., and Ullrich, C., “Activemath: A generic and adaptive web-based learning environ-
ment”, Artificial Intelligence and Education, 12(4), (2001).

[19] Naylor, B., and Watt, S., “Meta Style Sheets for the Conversion of Mathematical Docu-
ments into Multiple Form”, On-line Proceedings of the First International Workshop on
Mathematical Knowledge Management, (2001).

[20] Nederpelt, R., and Kamareddine, F., “An abstract syntax for a formal language of math-
ematics”, Proceedings of the Fourth International Tbilisi Symposium on Language, Logic
and Computation, September 2001, Borjomi, Georgia.

[21] Odlyzko, A.M., “Tragic Loss or good riddance? The impending demise of traditional
scholarly Journals”, Intern. Journal of Human-Computer Studies, 42, 71–122, (1995).

[22] Oostdijk, M., Generation and Presentation of Formal Mathematical Documents, PhD
thesis, (University of Eindhoven).

[23] Russ, S.R., Kechris, A.S., Pillay, A., and Shore, R.A., “The prospects of mathematical
logic in the twenty-first century”, Bulletin of Symbolic Logic, 7(2), (June, 2001). Studies
42 (1995), 71–122.

[24] AT&T Labs-Research, “The Graphviz Suite”, http://www.research.att.com/sw/
tools/graphviz/download.html.

[25] “Common Criteria for Information Technology Security Evaluation. Part 1: Introduction
and General Model, Version 2.1.”, (August, 1999), http://csrc.nist.gov/cc/.

[26] “Common Criteria for Information Technology Security Evaluation. Part 2: Security
Functional Requirements, Version 2.1.”, (August, 1999), http://csrc.nist.gov/cc/.

[27] “Common Criteria for Information Technology Security Evaluation.Part 3: Security As-
surance Requirements, Version 2.1.”, (August, 1999), http://csrc.nist.gov/cc/.

[28] “The Coq Proof Assistant Reference Manual, Version 7.2.”, INRIA Technical Report 255,
(2002).

[29] “ECMAScript Language Specification, Standard ECMA-262”, http://www.ecma.ch/
ecma1/STAND/ECMA-262.HTM.

[30] “The JavaDoc Tool Homepage”, http://java.sun.com/j2se/javadoc/.

[31] “Knowledge representation and management in ActiveMath”, The Active Math Group.
Submitted to the Proceedings of MKM’01 in Annals of Mathematics and Artificial Intel-
ligence, (2002).

[32] “Living Reviews in Relativity”, http://www.livingreviews.org.

http://www.research.att.com/sw/tools/graphviz/download.html
http://www.research.att.com/sw/tools/graphviz/download.html
http://csrc.nist.gov/cc/
http://csrc.nist.gov/cc/
http://csrc.nist.gov/cc/
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM
http://java.sun.com/j2se/javadoc/
http://www.livingreviews.org

MoWGLI, IST-2001-33562 54

[33] PostScript Language Reference Manual, Third Edition, (Addison-Wesley, 1999). For a re-
lated online version see: http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.
pdf.

[34] PDF Reference: Adobe Portable Document Format”, Version 1.3, (Addison-Wesley,
2000). For a related online version see: http://partners.adobe.com/asn/developer/
acrosdk/DOCS/PDFRef.pdf.

[35] University of Bologna, “The XLinkProxy”, http://www.cs.unibo.it/~fabio/
XPointer/.

[36] W3C Consortium, “Extensible Markup Language (XML) 1.0 (Second Edition)”, http:
//www.w3c.org/TR/2000/REC-xml-20001006. W3C Recommendation 6 October 2000.

[37] W3C Consortium, “Mathematical Markup Language (MathML), Version 2.0”, http:
//www.w3.org/TR/MathML2/. W3C Recommendation, 21 February 2001.

[38] W3C Consortium,“XML Linking Language (XLink) Version 1.0”, http://www.w3.org/
TR/2001/REC-xlink-20010627/. W3C Recommendation 27 June 2001.

[39] W3C Consortium, “XSL Transformations (XSLT). Version 1.0”, http://www.w3.org/
TR/xslt. W3C Recommendation, 16 November 1999.

[40] W3C Consortium, “HTML 4.01 Specification”, http://www.w3.org/TR/html4/. W3C
Recommendation December 24, 1999.

[41] W3C Consortium, “Extensible Stylesheet Language (XSL), Version 1.0”, http://www.
w3.org/TR/xsl/. W3C Recommendation, 15 October 2001.

[42] W3C Consortium, “Scalable Vector Graphics (SVG) 1.0 Specification”, http://www.w3.
org/TR/SVG/. W3C Recommendation, 4 September 2001.

[43] W3C Consortium, “An XHTML + MathML + SVG Profile”, http://www.w3.org/TR/
2002/WD-XHTMLplusMathMLplusSVG-20020430/. W3C Working Draft 30 April 2002.

[44] W3C Consortium, “XML Pointer Language (XPointer) Version 1.0”, http://www.
w3.org/TR/2001/CR-xptr-20010911/. W3C Candidate Recommendation 11 September
2001.

[45] W3C Consortium, “Document Object Model (DOM)”, http://www.w3c.org/DOM/.

[46] W3C Consortium, “Document Object Model (DOM) Level 2 Events Specification, Ver-
sion 1.0”, http://www.w3.org/TR/DOM-Level-2-Events/. W3C Recommendation, 13
November 2000.

http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://partners.adobe.com/asn/developer/pdfs/tn/PLRM.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/PDFRef.pdf
http://partners.adobe.com/asn/developer/acrosdk/DOCS/PDFRef.pdf
http://www.cs.unibo.it/~fabio/XPointer/
http://www.cs.unibo.it/~fabio/XPointer/
http://www.w3c.org/TR/2000/REC-xml-20001006
http://www.w3c.org/TR/2000/REC-xml-20001006
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/MathML2/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/2001/REC-xlink-20010627/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt
http://www.w3.org/TR/html4/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/xsl/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020430/
http://www.w3.org/TR/2002/WD-XHTMLplusMathMLplusSVG-20020430/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3.org/TR/2001/CR-xptr-20010911/
http://www.w3c.org/DOM/
http://www.w3.org/TR/DOM-Level-2-Events/

	Introduction
	Semantics, Content and Presentation
	Beyond expressions

	The role of XML technology
	XML and the standardisation effort

	Application Scenarios
	Sample document 1
	What one would like to do with the file
	What types of content do we need to be representable in MoWGLI?

	Sample document 2
	What one would like to do with the files
	What types of content do we need to be representable in MoWGLI?

	Sample document 3
	Security evaluation of IT products
	Documents involved in the evaluation procedure
	What one would like to do with the files
	What types of content do we need to be representable in MoWGLI?
	Some general requirements

	Discussion

	Standard Languages for Mathematical Knowledge Representation
	The Mathematical Markup Language
	Presentation elements
	Content elements
	Keeping both Content and Presentation

	OpenMath
	OMDoc
	Mathematical Theories in OMDoc
	Simple Theories
	Complex Theories and Inheritance

	Authoring
	Authoring in the context of proof assistants
	Creating new mathematics
	Putting Formal Mathematics on the Web

	Authoring in a free context

	Stylesheets and Transformation
	Export
	Transformation
	Presentation
	Stylesheet editing

	Rendering tools
	Languages for Scientific Documents
	XML-based Languages
	Other Markup-based Languages
	Low-level, Page-description Languages

	Applications for MathML
	Web Browsers
	Extensions
	Indirect Rendering

	Requirements

	Interaction, Editing and Other Dynamic Aspects
	Hypertexts
	Dependency Graphs
	Parametric Documents
	Semantic Selection
	Dynamic Documents
	WYSIWYG Editing
	Alternatives to WYSIWYG Editing

	References

