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1 Introduction

The MOWGLI partners work on very different mathematics applications, ranging from formal
proofs to the publication of informal mathematical texts. In order to take advantage of each
other’s repositories and knowledge, the knowledge representations that are still heterogeneous
have to be structured and annotated in a way that the knowledge can be used by common
services that will be built and that will provide an added value for the community.

This report is the basis for developing a common knowledge representation/XM L-markup
that can serve the tools that will be developed in MOW GLI such as search and retrieval tools,
dictionaries, standard APIs, and authoring tools, editors, transformations, and presentation
style sheets and those tools developed world-wide that are based on Web-standards.

Therefore, envisioned markup for heterogeneous mathematics applications has to be
system-independent and machine-readable. It will have to take into consideration different
layers of mathematics: presentation, structure, mathematical ontology, formal content, and
logical context.

Similarly to other domains, these information layers have to be reflected in different layers
of the markup. Compared with syntactic markup in languages such as HTML and LATEX,
content markup provides additional information about the structure of a document and the
ontology of the domain at hand see §2.1. In addition, modular information that is relevant for a
direction of application such as in education can be provided. Since the formal applications of
mathematics are based on different logical foundations these have to be additionally introduced
into the markup. We shall call this logical context markup. !

Content Markup

Standardization of content encoding can be profitably and successfully pursued as already
testified by content-MATHML and OPENMATH. Content markup defines structures, formulas
and names of mathematical operators. At the content layer, the intended applications include:

e search and retrieval of the content items

e copy and paste of the mathematical expressions to Computer Algebra Systems and to
proof systems

e transformation to a suitable presentation format
e semantic refinement that can be envisioned as a system of backward pointers to the
logical context encoding of the same item
Context Markup

By context markup we mean a description that is used for formal elaboration (computation,
theorem proving, proof checking, etc.). This gives raise to requirements for the markup: it
should contain enough information to

e allow a logic based formal proof system to use the information as an input

'This is somewhat (not fully) similar to the different ontologies developed by different companies for a
domain or organization. These ontologies might not map each other totally and may denote the same object
differently.
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e automatically search and retrieve formal expressions allowing for applying the search
heuristics of the underlying logical system

e automatically transform to content markup

2 Structure/Ontology of Mathematical Knowledge

Mathematics has a richly structured language. In this section, we discuss the structured and
ontological information in mathematical documents to be encapsulated into a markup.

The ontology comprises different kinds of mathematical items such as theorems, proofs,
and examples (see §2.1). On the one hand these items may have a structure themselves. On
the other hand they can form new collections/structures in documents such as a version or a
particular sub-document.

On examples of particular applications and representation languages that are in the focus
of the project (e.g. HELM using COQ [2] or ACTIVEMATH using OMDoc [15, 11]) we can see
how different applications impose diverse structuring of mathematical knowledge.

2.1 Items of a Mathematical Ontology

Mathematical items are basic components of a library and of a domain ontology (definitions,
theorems, conjectures, examples, and so on). Basically, these are the explicitly referentiable
objects of a library and can be identified by a Uniform Resource Identifier (URI). The scope of
such identifiers is global and differentiates them from other locally referentiable entities such
as local variables, assumptions, or proof justifications that live inside a mathematical item.

A generic URI [3] is made of a formatted (structured) string of characters whose intended
meaning is associated with the applications managing it. URLs (Uniform Resource Locators)
are a particular kind of URIs specifically designed to name resources accessed by means of
a standard protocol (for example HT'TP). URLs consist of a part identifying the protocol, a
host name, and a part to locate the resource on it. URLs can be resolved by standard tools
and browsers but suffer from problems of consistency: moving the target document leads to
dangling links. Moreover, being physical names, they cannot easily be used to identify a set
of copies located on different servers for fault-tolerance and load-balancing purposes. URIs,
instead, can be designed as logical names leaving the burden of resolution to physical names
to the applications.

A complete definition of a URI mechanism is important for the MOWGLI project. Ap-
plications using the MOWGLI encoding will have to convert the URIs to appropriate URLs
or user-interface actions and back. Authoring tools will have to encode the URIs in the most
portable and readable fashion. Finally validators and search engines will manage URIs and
references and will have to resolve them efficiently.

Next we list the atomic structural elements relevant for mathematics, some of their prop-
erties and relations. The items or elements that occur in many mathematical documents are
definition, conjecture, axiom, theorem proof, proof method, algorithm, mathemati-
cal structure such as the real numbers, etc.

In a publication or educational application other items can occur such as example exer-
cise, different kinds of text (explanations, motivations, introductions etc.), figures, multime-
dia elements
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Elements that are not specified as stand-alone structural elements and therefore, not re-
ferred to by a URI but included into those structural elements are, e.g., formula, type,
expression.

At the level of items, the distinction between logical context and content is less dramatic.
For instance, in the Calculus of Inductive Constructions there are the following basic kinds of
items: definitions, axioms and inductive definitions. At the logical level there is no explicit
distinction between a definition and a theorem (implicitly it can be “inferred” from its type).
Moreover, the notion of inductive definition which is a list of mutually inductive types, is
logic-prone with a subtle formal semantics “characteristic”.

Coming from different systems and logical foundations, the MOWGLI partners must face
the problem of possibly collecting all the basic kinds of objects or try to abstract them to a
smaller set of “common” constructions with a pseudo-formal intuitive semantics. Concretely,
C0Q inductive definition do not currently fit within the OMDoc categories of “definitions”.

2.2 Mathematical Micro- and Macro-Structure
2.2.1 Micro-Structure

Micro-structure refers to the internal structure of mathematical entities such as expressions,
formulas, types, theorems, definitions, proofs and other items introduces in the section above.

When defining a representation format for this internal structure, useful for different ap-
plications, interoperability problem arises. There are two kinds of representation markups
needed: formal - assigning semantics to collections of formal expressions within a mathemat-
ical item in order to be able to apply automated reasoning to them, and conceptual - struc-
turing the content of an item due to presentational or pedagogical purposes. For example,
the publishing application is concerned with defining nice templates for better presentation,
proof assistant application would require some sophisticated formal representation bound to
its logical foundation, Computer Algebra system would be satisfied with naive mathematics
not digging much into foundation systems, and, finally, a (good) math-education system would
require all of these and some additional pedagogical annotations (e.g. mark a part of the text
as important or link it to another content item etc.)

Therefore, we propose to split the micro-structure of mathematical items into two parts —
formal and conceptual. Conceptual part of the micro-structure can consist of informal text,
formulas encoded using content level markup, tables, diagrams, other multimedia elements.
The conceptual part of the micro-structure should support structuring needs of all applications,
in particular, enabling a transformation to suitable presentation formats.

The formal part of the micro-structure should allow for representing structures in different
formal foundations. It can consist of collections of formal expressions organized in a particular
fashion depending on the logical foundation in use. It is a research question whether designing
such a uniform micro-structure is possible, if we do not deal with the concrete system. Even
when having systems sharing the same logical foundation, it is sometimes difficult to separate
the representation of the content from the syntax of one system and transport it to another.

If the common application-independent representation of a formal part of the micro-
structure is not possible, multiple representations should be provided and modularized w.r.t.
corresponding systems.

Micro structure of proofs, formulas and their types are the subject of a particular interest
and will be discussed separately.
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Micro-Structure of Expressions, Formulas, and Types The micro-structure of math-
ematical expressions is a way of organizing operators, predicates, quantifiers and variables of a
mathematical theory in terms and formulas. The basic architecture for building mathematical
expressions is provided by such representation formats as MATHML and OPENMATH (see
§3.3).

Even the mere categorization between expressions, formulas, and types can sometimes
be completely blurred in the notations of a logical system. This is typical, for instance, for
most type-systems relying on the Curry-Howard isomorphism,which have a unique category
of “terms” covering all kinds of expressions and their types. In the case of the Calculus of
Inductive Constructions, a “formula” may roughly be identified as an object with a particular
sort called “Prop”, and an expression as an object of sort “Set” or “Type” and symmetrically,
a proof as an object of sort “Prop” and an expression as an object of sort “Set” or “Type”.
This classification is not syntactical (and thus can not be captured by a DTD) and requires
typing rules. Similarly, the main logical operator of CIC, the so-called “inductive type”,
is a delicate primitive construction whose semantics is typical for this calculus and cannot
be trivially axiomatized in other systems. All foundational systems (think, for instance of
Category Theory) have similar specialized constructions which make their beauty and provide
their distinctive features and there is really no point to avoid this richness. However, parts
of the encoding that belong to conceptually different layers but are combined for efficiency or
elegance have to be separated in a common markup.

The representation of types is a delicate subject as well. OPENMATH proposes to ‘attribute’
the mathematical objects with type information. That means, types can be attached to
mathematical expressions or their parts. This mechanism allows for different formal type
systems. OPENMATH defines two candidate type systems - ECC (based on the Extended
Calculus of Constructions) and STS (so called “Small Type System”).?

OMDoc offers its own markup for representation of abstract data types as a shorthand for
sets of inductively defined objects and recursive functions on them (see [11]).

Micro-Structure of Proofs Proofs are peculiar and one of the most cumbersome and
interesting parts of the structured description of mathematics. The analysis of “real” proofs
found in real mathematical document is far too complex to be dealt with in the limited scope of
MOWGLI. So, we shall mostly focus our attention on formal proofs (see e.g. [16, 20, 19, 13, 8])
and especially on how proofs are typically dealt with by tools for formal reasoning.

Over the last thirty years, semi-automatic proof assistants have an interactive mode for
proving theorems in which commands (tactics) are called that produces new, simpler subgoals
to be proved. Usually, the result of an interactive proof is a script file in which the commands
produced by the user are recorded. Usually, it is easy to check that this file is consistent
simply by re-running it with the proof assistant. A script file is system-dependent since the
command or tactics are often peculiar to the given proof-assistant. Moreover, the script is
barely readable by a user, since it is a sequence of commands issued with respect to a given
context, evolving with the script, that was available at proving time but is not explicitly saved
in the script.

Some proof assistants save the information in a more primitive, “compiled” representation
in the form of a “proof object”, e.g., a proof tree or a typed (lambda) term of the underlying
logical calculus. This representation depends only on the logical system in use, rather than

2see http://nag.co.uk/projects/OpenMath/omstd/#omtype’
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on the application. This representation could be conveniently used as an interchange format
between different applications sharing the same logic. However, the logical foundation has to
be encoded in the markup because it might influence the micro-structure.

Rendering is more complex than in the case of expressions since it should at least support
some kind of structuring, navigation, expanding subproofs on demand, etc. The actual im-
plementation of these dynamic aspects requires pretty complex solutions on the Web, either
based on dynamic-HTML (java-scripts), or based on specific constructs (as the MATHML-
presentation maction element).

It is not just the dynamic aspects of the presentation that require a rich micro-structure of
proofs but also the information about dependency of steps, different levels of detail for proof
steps, the logical context, and its hierarchical structure. The content markup for proof needs
a rich internal structure and is not yet sufficiently developed in the existing standard markups
which are primarily used for encoding formulas and expressions rather than for grouping
collections of formulas according to some rules.

Although proof theory encodes formal proofs just as another category of mathematical
expressions this seems to be inappropriate for XML-markup. In particular, representing a
proof as an expression looks a bit artificial and mathematically questionable.

In type theory it happens that proofs may be nested inside expressions. For instance, it
is customary to define the quotient operator for two integers as a function taking the proof
that the denominator is different from 0 as an additional parameter® (these kind of problems
is often a consequence of the deficiencies of type theory in managing partial functions). The
above situation may cause problems in case the markup for expressions does not allow nesting
of different markup.

Summarizing the above arguments we obtain the following requirements :

e support a human-readable presentation
e annotate the proof script with the context
e navigation in the proof structure e.g. inspection “on-demand” of specific subgoals

e support search for subgoals

2.2.2 Macro-Structure

A macro-structure is any organization of atomic mathematical items that uses relationships
between them. There are generic macro-structures as well as relatively arbitrary groups of
items. The generic macro-structure provides a general organization of a library that contains
the information about the connections between items whereas a group can be a more or less
arbitrary collection of mathematical items, manually assembled by an author or automatically
assembled for presentational purposes. Those groups range from itemizations to TOCs.

In mathematical documents we can also find structures that are more complex than a
single basic item, for instance,

e group of elements such as tables

3This kind of situation also gives annoying rendering problems: of course we would like to display the
quotient of n and m as the fraction n/m, especially if nested within other expressions; at the same time it
would be nice to warn the user that some information as been hidden there, without cluttering the expressions
with hideous “handles”.
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e view

table of contents

theory
e module

Depending on the application scenario, different “views” of the same content can use
specific dependencies for structuring a collection of mathematical items inherent to the content
such as view that contains the definitions only or exercises only, but also a document without
proofs.

Following the standards of ontological XML-languages, these structures have also to be
identified by a URIL. Moreover, in some applications such as educational documents the ques-
tion arises on how to characterize the properties and usage of those packages. A first (prelim-
inary) standardization is available with IMS content packaging. * This characterization is key
for the reuse in other application contexts. For instance, a course can be characterized by its
learning strategy, the appropriate school level, its overall technical requirements.

An element of a macro-structure has to be annotated by relevant information such as :

e technical metadata needed for presentational purposes

e administrative metadata containing information on authors, versions, copyrights, usage
rights, etc.

e an ordered graph of elements containing pointers to items i.e. structure of a content
package.

According to the general guidelines for XML-languages the following requirements should
be met:

e modularization w.r.t. application-dependent criteria
e refinement of the underlying metadata structures w.r.t. application requirements

e extensibility of a packaging mechanism for integrating new resources

Theories

A theory is a special macro-structure that constitutes a logical context and semantics. A
theory is a collections of signature declarations, axioms, and theorems. It corresponds to
the standard notion of a formal theory that may contain additional items such as definition
which are redundant for the formal theory but useful for a human reader. Theories define
part of the mathematical ontology by grouping together the concepts that belong to the same
mathematical theory and assigning a logical context to them.

Some further sub-structuring of this level could be sensible. One could refine the structure
of a theory by introducing so-called modules that represent the maximal sub-theories of a
theory. For instance, for each module one introduces some minimal amount of new signature
elements and considers the maximal sub-theory of a given theory that does not extend the

“see http://wuw.imsproject.org/content/packaging/ for the specification
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signature. This would make sense, for instance, for the maintainability of a library of a proof
assistant : we can access or use a result without requiring the whole theory inside at the same
time, but only a minimal needed part of it.

Different theories can be connected by the dependencies of signature elements. The graph
of dependencies formed by the hierarchies of theories is called development graph in [10].
The OMDoc encoding has attempted to implement this paradigm.

2.3 Metadata

To enable and facilitate functionalities such as searching and indexing, additional information
has to be associated with documents and their units. It describes properties of the document
and its units and relationships among entities. The Web terminology for this information is
metadata, and typically it covers descriptive information of several kinds. Some metadata are
manually provided by author, editor, and so on, while others may be automatically generated
from the document itself.

The metadata can annotate every layer of a document structure — atomic pieces of knowl-
edge as well as the whole document and groups of documents.

Let us consider several definitions for metadata provided by different Web-communities
and summarize which characteristics of the document are to be described.

e W3C5: Metadata is machine understandable information for the web.

e FGDC®: Metadata or ”data about data” describe the content, quality, condition, and
other characteristics of data.

e UKOLN": Metadata can be defined literally as "data about data,” but the term is normally
understood to mean structured data about digital (and non-digital) resources that can be
used to help support a wide range of operations. These might include, for example,
resource description and discovery, the management of information resources (including
rights management) and their long-term preservation.

e IFLA®: Metadata is data about data. The term refers to any data used to aid the iden-
tification, description and location of networked electronic resources.

Consider the general requirements that a metadata specification should satisfy in order to
allow for exchange between different environments on the Web. According to [7], metadata
should satisfy the following principles: modularity, extensibility, refinement, and multilingual-
ism (internationalization).

Modularity enables a clear distinction of metadata coming from different resources and
provides a way to use existing standards instead of redefining them in the concrete application.
The use of name spaces plays an essential role here.

The need of extensibility and refinement is clear: every particular application should be
able to extend the metadata set according to its needs as well as refine the already defined
structures (e.g. sorting w.r.t. some additional properties or defining particular schemas for
value sets).

*http://www.w3.org/Metadata/
Shttp://www.fgdc.gov/metadata/metadata.html
"http://www.ukoln.ac.uk/metadata/
Shttp://www.fgdc.gov/metadata/metadata.html
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Some metadata elements in multi-cultural environments can be interpreted differently
depending on the country. For example, the date formats differ in North America and Furope,
so that in order to store the date information correctly one might consider defining separate
fields for day, month, and year rather than representing the full date as a string, where the
order of tokens plays a role. Another example is the differences of education systems, that
makes it difficult to annotate some pedagogical levels of learning material.

3 XML-Markup

In this section we consider some existing XML markups for both metadata and content of
mathematical documents.

Aside of describing the markup the mechanism of specifying the structure of the document
is explained. It is to be noted that the structure specification is a central characteristic of
such a markup. Such a structure specification is sometimes called a schema, a document type
definition, or an ontology.

3.1 Existing Encoding Standards for XML Markup

An XML-document is a combination of elements (constructed using tags) and the attributes of
these elements. An XML-language is defined using Document Type Definition (DTD) where
some restrictions on the content of elements and value of attributes are put. This restrictions
can be validated automatically w.r.t. the DTD. The DTDs themselves are represented in a dif-
ferent language and have restricted syntax that reduces their expressibility. The possibility to
restrict the value sets and types of the attribute according to the XML specifications is helpful
for implementing basic metadata element sets with fixed value sets. However, the DTDs can
represent only extremely restricted set of data types. Data types can be assigned to attributes
of elements either in the form of sequences of particular values or as a number of default string
formats. When defining an XML-language using a DTD, the exact number of occurrences of
elements can not be specified. Another fact, unacceptable for a modularized XML-language
is that DTDs have no support for name spaces which are essential for extensibility.

As a solution for these and many other problems of DTDs (see [21]), so-called XML-
schemas are suggested. A schema is represented in a particular XML language that has itself
a schema or a DTD. Schemas can much more flexibly define data structures and provide a
stronger control over the structure of the documents. Among others, schemas provide rich
support of data types, possibility to define own complex data types and reuse them in a generic
way, inheritance of types, control over exact number of child elements (or attributes), support
for name spaces, etc. Another limitation of DTDs is that the order of children elements of any
defined element is strict (which is not always wanted) and any document using another order
will be detected as not valid w.r.t. to the DTD. Schemas eliminate this restriction as well.
All these features provide a good basis for writing clean and more machine-understandable
XML-documents.

Finally, apart from standard XML-schemas, there exist some alternative and quite ad-
vanced schema languages for XML (e.g. RELAXNG?).

%http://www.oasis-open.org/committees/relax-ng/
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3.1.1 Resource Description Framework RDF

The W3C Resource Description Framework (RDF) [18, 17] provides a general model for rep-
resenting metadata as well as a syntax for encoding and exchanging these metadata over the
Web. This standard approach is domain-neutral, and it does not make any assumption about
an application domain. It supports interoperability of independently developed Web-servers
and clients, more generally, between applications that exchange machine-understandable in-
formation on the Web. Documents described by RDF-metadata can potentially be indexed
by search engines in a more effective way.

The basic construct of RDF is a URI, introduced in the section §2.1. RDF introduces the
notion of a resource that is anything that has a URI (Uniform Resource Identifier) and way of
describing a resource using so-called statements that are triples (resource, property, value) also
known as ’subject’, 'predicate’ and ‘object’ of a statement. Schematically, one could imagine
an RDF document as a labeled directed graph, consisting of nodes and arcs. The nodes of
the graph are always resources or the values of the properties assigned to this resources and
the arcs represent properties themselves. By definition, a node can be represented by a URI,
as a blank node or a string (so-called “literal”) and an arc is always labeled by URIs.

There is a straightforward method for expressing the statements in XML that is an in-
termediate format for interchanging between RDF applications. Namely, the nodes and arcs
of the RDF-graph are turned into XML-elements, attributes, element content and attribute
values. The URI labels for properties and object nodes are written in XML using name spaces.

The basic syntax of RDF is defined by the RDF-schema. Using this schema one can
create documents or define his own RDF languages by specifying a new schema using syntax
of RDF.

As in case of XML-schema, RDF-schema provides a mechanism for describing constraints
on its elements. The main difference to XML is that RDF focuses on the communication
of its classes and properties using nested elements to simulate the ordered graph of an RDF
statement, shading the difference of nature of elements and attributes by freely converting
attributes to elements and back, when for XML this difference is of a fundamental character.
This means, RDF can RDF class is similar to the class in object-oriented programming. It
can have sub/super-classes, instances, and properties. RDF-schema provides a mechanism
for specifying constraints on the use of properties and classes in RDF-documents. These con-
straints are specified by providing domains and ranges of the properties that are the instances
of particular classes.

Compared to XML-schemas, RDF-schema is weaker in constraining the XML-structure
of a document, and the semantics of the data types defined as abstract classes in RDF depend
on the application. RDF does not specify whether or how an application must process the
constraint information, so that different applications might use these constraints in different
ways.

3.1.2 DAML+OIL

DAML+OIL is a is an RDF-based semantic markup language for encoding Web-resources. It
extends the basic RDF-schema with modeling primitives of Description Logic. DAML+OIL
provides a semantic interpretation for the parts of an RDF graph that instantiate the
DAML+4OIL schema.
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DAML+OIL originated from DAPRA Agent Markup Language (DAML)!® expressing
more sophisticated RDF class definitions than permitted by RDFS (RDF schema) and On-
tology Inference Layer (OIL),'! another effort using constructs from frame-based Al

Additional DAML+4OIL classes and properties defined in DAML4OIL schema can ex-
press far more sophisticated classifications and properties of resources then RDF'S and, there-
fore, provide a powerful representation format for ontologies of machine processable knowledge.

For example, one can express boolean combinations of classes or specify that two classes
are disjoint. The Property class of RDF has some important refinements. It can be enriched
with some qualifiers like inverseOf providing relation of one property to another or Transi-
tiveRelation providing meta-information on structure of relations. Another important facility
that DAML4OIL provides is a property restriction that is a way to restrict classes to a set
of resources satisfying particular properties. The cardinality or the values of these properties
can be specified.

Another key to the expressivity of DAML4OIL is that apart from the RDF-mechanism
for defining types it also allows to use XM L-schema data types simply by including their URIs
within the DAML+OIL ontology.

3.2 Existing Metadata Standards

The large variety of needs of different information communities makes it impossible to design
a generic metadata element set ”for everybody”. Instead, it is rather desirable to provide an
extensible and modularized framework for defining new metadata and for reusing the existing
element sets from different sources. This is the goal of studies of the Semantic Web initiative
at W3C that suggests to use RDF as a tool for defining interoperable metadata standards.

3.2.1 Dublin Core Metadata Element Set

Dublin Core Metadata Initiative!? suggests a minimal metadata element set that contains basic
metadata needed by most of the Web Applications. It contains administrative information
about the document.

According to the version 1.1 of Dublin Core Metadata Element Set, there are 15 meta-
data elements: Title, Creator, Subject, Description, Publisher, Contributor, Date,
Type, Format, Identifier, Source, Language, Relation, Coverage, Rights. Fach
Dublin Core (DC) element is defined using a set of ten attributes from the ISO/IEC 11179
[ISO11179] standard for the description of data elements. Every metadata element has a
Name, Identifier, Version, Language, Definition etc.. This meta-metadata specifies
some technical properties of the metadata element itself and suggests the usage.

Note that DCMES is not sufficient for describing even it’s own elements, i.e. some of the ten
attributes used to describe a DC-element are not DC-elements themselves (such as Maximum
Occurrence indicating any limit to repeatability of the data element). This, however, does not
speak against the aim of the Dublin Core Metadata Initiative that is to provide a minimal set
of elements used by an application in order to administrate the data.

Various applications implement DCMES in their data representation formats with a dif-
ferent level of refinement, attributing some of the elements by subproperties such as role of

Ysee http://www.daml .org
see http://www.ontoknowledge.org/oil/
125ee http://www.dublincore.org
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Contributor with values “edt” for editor, “tr]” for translator etc..

3.2.2 IEEE Learning Object Metadata and Extensions

IEEE Learning Object Metadata (LOM) together with IMS Learning Resource Metadata
suggests a metadata element set needed to annotate learning objects. According to the LOM
specification,'3 the purpose of this standard is to facilitate search, evaluation, acquisition, and
use of learning objects by learners or teachers. Another goal is to facilitate the sharing and
exchange of learning objects.

The elements of the Base Scheme of LOM are grouped in nine categories: General,
Lifecycle, Meta-metadata, Technical, Educational, Rights, Relation, Annotation and
Classification. Each of this categories groups data elements. Every element has an expla-
nation that defines this element, size indicating the number of values, order of this values,
value space, data type, and an illustrative example.

Dublin Core element set is represented as a subset of LOM, and some refinements of DC
elements are provided. For instance, the element relation is refined into separate category,
including important properties of relation such as kind specifying the nature of relation, key-
words, or other classificational metadata.

Metadata describing a learning situation are defined. For example, one can specify the type
of learning resource (exercise, table, self assessment etc.), intended role of the user (learner,
teacher, author etc.), learning context (secondary education, university first cycle, etc.), se-
mantic density and technical difficulty of the content.

Metadata for a measure of interactivity are provided. These are interactivity type that
is defined according to criteria such as the balance of information flow between the learning
object and the user, and naturally the interactivity level for measuring the intensivity of such
communication.

Some extensions of IMS such as EML (Educational Modeling Language are designed to
serve not only as static descriptions of properties of learning objects, but also try to annotate
the dynamic process of learning and teaching.

)14

3.2.3 IMS content packaging

Packages are collections of documents containing all the information on the organization of
these documents as well as their content. Such collections are useful for knowledge exchange
between applications sharing common document representation formats.

The IMS Global Learning Consortium has issued a standardization attempt for the orga-
nization and distribution of learning materials in the form of so-called content packages. The
objective here is to define standardized structures needed in order to exchange content.

According to IMS Content Packaging information model, a package represents a unit of
reusable content that may itself be a part of another package. It must contain all information
needed in order to use it stand-alone.

The package consists of so-called manifest that describes the package itself and of the actual
content files. The manifest contains metadata about the package, an organization element
describing the organization of the content within manifest, resources element consisting of
resources that are records of metadata, dependencies and identifiers of the physical resource

3see http://1tsc.ieee.org/doc/wgl2/LOM-WD3.html
Ypttp://eml.ou.nl
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items (files), and possibly one or more (sub)manifests. For metadata any of the IMS metadata
elements can be used.

3.3 Existing Approaches for Mathematics

In this section, we describe main features, motivation, and problems of MATHML, OPEN-
MATH, and its extension OMDoc, as well as of the HELM knowledge representation.

3.3.1 MAaTHML

Mathematical Markup Language (MATHML)!® is a general purpose XML-language for the
representation of mathematical expressions on the Web. It consists of two parts: presentation-
MATHML aiming to provide a standardized rendering of the mathematical notations on the
Web and content-MATHML - the markup for content-level encoding of mathematical expres-
sions.

The presentation markup of MATHML has become a dominant standard for rendering
mathematics on the Web and is natively supported by the Mozilla and Amaya browsers.

Content markup of MATHML explicitly defines (as elements) a small set of most com-
monly used mathematical constructs. In addition, it provides a mechanism for associating
meaning with new symbols and constructs that are not present in the core tag library. For
this purpose the semantics element is introduced. It contains a mathematical expression for
the presentation of new symbol together with the mapping to its semantics.

The mathematical expression is represented in content-MATHML and enriched with addi-
tional semantics via providing one or more elements called annotation or annotation-xml.
These elements establish a mapping to one or more external systems that are able to provide
semantics to the construct. The value of the attribute encoding points to the external math-
ematical system (e.g. CAS) or representation format (e.g. OPENMATH) and the body of this
element contains as a string the definition of the symbol encoded in the syntax of the external
system. In case, the external system uses an XM L-representation format the annotation-xml
element is used, otherwise - the element annotation.

The base set of content-MATHML elements is meant to be adequate for simple coding of
most of the formulas used in education from Kindergarten up to the first two years of college,
that is up to A-Level or Baccalaureate level in Europe. Subject areas covered to some extent
in MATHML are: arithmetic, algebra, logic and relations, calculus and vector calculus, set
theory, sequences and series, elementary classical functions, statistics, and linear algebra.

The meaning of the symbols of content-MATHML is fully defined in its specification and the
names of mathematical symbols that can be used in the MATHML document are hardcoded
in a DTD as opposed to OPENMATH. For symbols that are not in the base-set, a csymbol
element has to be used with a URI pointing to something that could be a description or a
definition of the symbol. MATHML has no architecture to share the definition or description
of them, nor has it a formal way to define them.

There exists almost one-to-one mapping between the core content MATHML tag libraries
to the core Content Dictionaries of OPENMATH considered next.

Yhttp://www.w3.org/TR/REC-MathML
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3.3.2 OPENMATH

By the definition of the OPENMATH community,!® OPENMATH is ”an emerging standard
for representing mathematical objects with their semantics, allowing them to be exchanged
between computer programs, stored in databases, or published on the worldwide web”.

The mathematical objects are mathematical symbols, expressions and formulas encoded
semantically with the help of so called Content Dictionaries (CDs). The symbols to be used
as atoms in a formula are introduced in CDs and semantics is assigned to them. A symbol
can represent a function or a binding operator or a name for particular mathematical struc-
ture. The CDs are sorted thematically and sometimes more then one CD is introduced for a
particular context. For instance, for symbols and operators of linear algebra several CDs are
defined. Each of the CDs “linalg2” and “linalg3” defines symbol called vector. The difference
between this two notions of vector is that the first one is used to describe row vectors and the
second - column vectors.

However, one can not really speak about a unique semantics here. For instance, if some
symbol has a unique representation in mathematical scripts (like the notion of an element of
a set), then we assign a unique semantics to it and say that this symbol is always representing
the particular object. But, for instance, the symbol for the plus operation that can represent
addition of natural numbers as well as the addition of matrices is introduced in OPENMATH
only as a name for any associative and commutative operation on any structure which is
at least a semi-group. The only difference between the symbol times for a commutative
multiplication operation from “arith2” and symbol plus from “arithl” is that it is called
times and it is “multiplicative”.

Therefore, in order to provide unique and correct semantics for mathematical expressions
more symbols have to be defined for particular structures. For example, different symbols
should be defined for multiplication operation of integers and complex numbers instead of
using times from “arith2”. As opposed to content-MATHML, such an extension is possible
in OPENMATH by simply introducing a new content dictionary which can be shared between
authors or developers.

The conversion of an OPENMATH content object to/from its internal representation in
a software application is performed by an interface program called phrasebook. In turn, the
development of phrasebooks should be directed by Content Dictionaries which provide human-
readable (and in the future machine-understandable) descriptions of OPENMATH objects. As
opposed to HELM markup, OMDoc allows for more flexible organization of the items, e.g. it
does not have such restrictions as “one item per file”.

3.3.3 0MDoc

Typical extension functionalities offered in order to provide more structure to groups of for-
mal expressions by existing languages such as MATHML-content or OPENMATH have been
mostly conceived for adding new “operators” and are too weak for expressing new “grouping
constructs”.

OMDoc extends OPENMATH markup which encodes only the micro-structure of mathemati-
cal expressions, providing the encoding for definition (formal or not) of mathematical symbols
and other items building a mathematical document. Apart from items, it defines the general

http://www.openmath.org
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structure of mathematical documents and thus an ontology of mathematical knowledge [11].
Most of the mathematical items considered in 2.1 are defined in OMDoc.

The micro-structure of an OMDoc item consists of two parts that can be provided in parallel
- formal expressions and informal explanations. In OMDoc the simplest items are all kinds of
textual remarks, assertions, and examples. They consist of the building blocks of any item
- CMP (Commented Mathematical Property) and FMP (Formal Mathematical Property).
FMPs contain only formulas in OPENMATH syntax. In CMP, formal expressions are enriched
with informal text, diagrams, links etc..

There are OMDoc items whose internal structure is more complex. For example, the el-
ement proof can contain declarations of new symbols as well as some additional structure
information for the stepwise representation of a proof (derive, hypothesis, conclude). Proofs
are represented as sequences of connected steps that can recursively contain nested subproofs
and proof objects.

The element adt (abstract data type) that represent short forms for groups of symbols
and their definitions has an elaborate internal structure that allows for formal definition of
abstract data types. This is relevant for formal software verification.

Except for a few examples, the micro-structure of OMDoc items is not expressive enough to
support all the needs of many application, since it has to be general enough to serve as a core
standard for many applications.

For example a more structured representation of a proof (for instance, a proof plan ex-
panding with different level of detail) would be of interest fpr an educational application or a
proof assistant, but it is questionable whether this kind of representation should be a part of
core representation and force all applications to use it.

The macro-structure of OMDoc documents consists of several parts.

e relations between items
e a grouping element
e theories

OMDoc uses the semantical grouping structure theory instead of Content Dictionaries for
creating ontologies of mathematical concepts. There new symbols are introduced and particu-
lar fixed semantics is assigned to them by providing a definition for every symbol. OMDoc also
provides an inheritance mechanism between theories that allows for introducing hierarchies of
mathematical concepts connected via theory imports and morphisms of signature specifying
how the semantics of the symbols are mapped. The OPENMATH CDs are translated into
OMDoc theories using an automatic translation tool of M. Kohlhase.

OMDoc metadata are present in the macro-structure elements as well as in the mathemat-
ical items themselves. 0MDoc employs Dublin Core Metadata Element Set with the number
refinements like introducing attribute role for elements Creator and Contributor etc.. Apart
from DC specification, there is an extradata field, where all metadata extensions made within
a particular application can be introduced.

Some metadata important for mathematical knowledge manipulation are represented as
the XML attributes of mathematical items. An example is the for attribute of a mathematical
item that can point from a definition to a concept it defines, from the proof to a theorem it
proves or from an elaborating text, example, or exercise to a corresponding concept.

Other technical metadata describing different mathematical properties of an item are in-
troduced by attributes of the item. For example, a definition has an attribute type with
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values ’simple’, 'inductive’, 'implicit’, etc., assertion can be of a type theorem’, ’lemma’,
‘corollary’ etc.. The fact that these properties are encoded as attributes implanted in the
OMDoc item is subject of debate. We suggest that all the properties of an item that do not
have an impact on the micro-structure of the item should be put inside the metadata field
and possibly separated from the content for the better management of the content. This way
authors can specify different sets of metadata for the same content items that will allow for
reusability in different contexts.

3.3.4 HELM Markup

The project HELM 7 aims at the study and the development of a technological infrastructure
for creation and maintenance of a virtual, distributed, hypertextual library of formal math-
ematical knowledge. The main leit-motivs of the project are the accessibility of the mathe-
matical repositories in an application independent format, as it can be conveniently provided
by XML, and the extensive use of XML-technology for implementing generic functionalities
such as rendering and searching.

A suitable extension of MATHM L-content is used as an intermediate content representation
between the contextual and the presentational formats. In particular, HELM currently uses
MATHML-content for encoding both, expressions and proofs. For the level of mathematical
items and the macro-structure HELM has its own markup. The markup is experimental and
has never been advertised and not adequately documented.

The crucial point is the evolution from the old application-oriented management of infor-
mation, to a new content-centric design [1].

HELM aims at improving the modularity of the applications and at decoupling all those
functionalities which are largely independent from the specific framework used by the appli-
cation. Schematically, the global architecture of HELM is described in Fig.1.

HELM was tested on the mathematical library of the COQ proof assistant. Some prelimi-
nary experiments have been also performed with the mathematical repository of the NUPRL
system.

3.4 Additional Information Available in and Relevant for the Applications
in MOWGLI

Depending on the application, many additional metadata might be useful in a mathematical
document.

Historically, for mathematical publications classifications have been used to annotate ar-
ticles.

Therefore, Mathematical Subject Classification has to be considered since many mathe-
matical documents exist already online, and are annotated by classifiers. Compared to content
markup the classifications are abstract and may provide an additional value. So, classification
could be a part of the content markup. Note, however, that classification keywords annotate
existing documents mostly for document-level purposes, including libraries, search, etc.

Currently, there are three classification systems in use: the Mathematics Subject Classifica-

tion'®, the Dewey Decimal Classification'?, and the Universal Decimal Classification System?’.

Yhttp://www.http://www.cs.unibo.it/helm/

18MSC 2000, http://www.ans . org/msc/

DDC nttp://www.oclc.org/devey/

20UDC, see e.g. http://www.lib.demokritos.gr/udceng.htm
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Figure 1: HELM architecture

The latter two are general schemas with mathematics as a part only.

The Dewey Decimal Classification (DDC) was conceived by Melvil Dewey in 1873 and
first published in 1876. The DDC is published by Forest Press, a division of OCLC Online
Computer Library Center. The DDC system is one the most widely used classification system
in the world, it is largely known by librarians but hardly known to mathematicians. At
the broadest level, the DDC is divided into ten main classes meant to cover all areas of
knowledge. Each main class is further divided into ten divisions and each division into ten
sections. Concerning a given area of knowledge such as mathematics, the final classification
is not as fine-grained as that of MSC 2000.

The Universal Decimal Classification system (UDC) is a similar “universal” classification
schema which was originally inspired, by DDC, and then independently evolved into an in-
ternational standard. UDC is currently widely spread in Russia but less used than DDC in
western countries.

The common standard in mathematics is MSC 2000 which currently is supervised by Jane
Kister (editor-in-chief of Mathematical Reviews) and Bernd Wegner (editor-in-chief of Zentral-
blatt MATH). The MSC is used to categorize items covered by the two reviewing databases,
Mathematical Reviews (MR) and Zentralblatt MATH (Zbl). The MSC is broken down into
over 5,000 two-, three-, and five-digit classifications, each corresponding to a discipline of
mathematics (e.g., 11 = number theory; 11B = sequences and sets; 11B05 = density, gaps,

topology).
Certainly a problem of MSCS is that different reviewers may annotate a document with
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different classification keywords.

It is to be expected that following the development of MOW GLI research, the organizations
maintaining the classifications will gradually gain interest into standardizing symbol sets which
will be then used by authors and will then be searched for in databases.

3.4.1 Mathematics Education

In a learning environment such as ACTIVEMATH some additions for educational purposes are
important. The metadata provide information for components of a learning environment such
as user model and the presentation engine. In order to be able to reason about the usefulness
of a particular piece of content, the piece has to be annotated with metadata describing the
learning situation in which it should be used and with difficulty values.

Essential functions of metadata assigned to a content element are :

e they describe administrative/legal characteristics of an element

e they supply information needed to automatically choose the most suitable material in
the current learning situation

e they supply information needed to update the user model when the user has worked on
the material.

For the first requirement the Dublin Core metadata suffices.

For choosing material depending on the learning situation one has to introduce metadata
modeling the learning situation and refine the structure of relations of the mathematical
items w.r.t. the representation of learning situation. This includes the education and cultural
background of a learning context, e.g. the domain of an example, year of study etc.

The representation of feedback on user’s actions is still a subject of research.

3.4.2 Search for Mathematical Expressions

The requirements for effective search techniques for mathematical notions may be highly
demanding. In particular, typical queries may require complex elaborations that cannot be
trivially compiled into standard data base query languages. Typical examples are:

1. matching “equivalent” notions, such as say n~! and 1/n. Supporting this feature requires
the implementation of some form of “reduction” eventually comprising the unfolding of
definitions.

2. taking into account “isomorphic” shapes. When looking for a formula of the shape AA B,
we would like to match B A A as well.

3. supporting unification, as opposed to “pattern matching”.

Complex queries are being pursued by the HELM Project with promising results. Cur-
rently, the metadata which have been considered is a list of identifiers at specific, key positions
inside the logical items. However, matching “equivalent” notions might become too dependent
on the logical foundation of the COQ system which is used to proof-check these equivalences.
Moreover, it is not clear that such search algorithms are terminating in finite time.

The approach of MBASE[12], developed in Saarbriicken, is to support a more general,
application-independent query mechanism that uses pattern matching extended by matching
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equivalent notions w.r.t. some elementary properties of well-known operators (e.g. associa-
tivity and commutativity of equality relation etc.). This mechanism is independent of the
particular logical foundation, since the properties considered can be proof-checked by any
formal system in use.

Because of the complexity of queries and the dimension of the data base it may be in-
teresting to divide the search into two phases, where we first select a restricted number of
“candidate” documents, and then interrogate this subset in a more precise way, to get the
answer. The first “selection” step, could be based on metadata automatically generated form
the source document. These metadata would essentially provide an approximate description
of the content that is explicitly meant for fast searching and retrieving operations.

4 Research Methodology

According to the goals of MOWGLI, we shall determine a common core data model for the
heterogeneous applications. For efficiency and readability reasons this includes a modulariza-
tion of the information relevant to specific applications, see the W3C recommendations?! It
requires to determine which parts of the knowledge representation can be standardized among
the partners and in compliance with the existing standards. In case of disagreement the small-
est common representation will consist of everything that is needed in a common architecture
and common APIs.

In what follows, we list several research problems which have to be investigated in order
to design a common data model for the heterogeneous mathematical applications, at least the
applications contributing to MOWGLI. A goal of the research is to provide a markup that
will be common to all applications and extend existing knowledge representation standards

for the Web.

e how to represent logical foundations: natural deduction, sequent calculus, resolution
calculus, calculus of inductive constructions etc.

e which macro-structures: view, theory, module, import

e interactive documents (for education, living review..)

e standard for system/service actions, feedback representation

e versions or life cycle information, other technical metadata

e variants of the same item (e.g. with different verbosity, language, etc.)

e sections/chapters and which level content packages are needed

e user-provided keywords (good for bridge to older documents, as abstract markup,)
e hierarchical structures

e how to represent proof

e modules to be stored in separate data bases

2nttp: //www.w3C.org
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e what cannot be standardized?

It is rather unclear whether a standardization of the logical context markup makes sense be-
cause it might be too dependent on foundational and methodological issues. If we cannot hope
to have a logic-independent encoding of the information, we might define a system-independent
markup in an application-independent format. This encoding would greatly simplify the ex-
ploitation of the libraries of formal documents of the application by any interested party for
any intended use.

For the purpose of an automatic elaboration as well as for the maintenance of a library it
may be convenient to store each mathematical item in a distinguished XML-file. The represen-
tation, especially of theorems and proofs may be huge. Parsing complex documents with the
current XML-technology is still problematic. Although the solution of storing each mathemat-
ical item in a stand-alone XML-file may look natural, it is not customary for proof assistant
applications, where information is usually saved in bigger clusters (theories, or sections). The
mentioned organization has major drawbacks for the maintainability of the library:

1. aresult cannot be accessed or used without requiring the whole theory inside which it is
defined. Since these theories are frequently very big, authors often redefine the required
results locally which leads to a useless and confusing duplication of information.

2. extending a theory or a section requires a recompilation. As a consequence, the “library”
which is the result of the contributions of many different authors who do not have any
access to contributions of other authors, tends to be “flat” and badly structured. This
hinders its development as a joint and cooperative effort.

The high verbosity of XML-documents and the difference between metadata for different
applications could give raise to the need to store metadata information separately from the
content and to connect it to the content item via reference to its URI.

For the purposes of manual authoring of the documents, the encoding should, however,
allow flexibility in these issues.
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