INFORMATION SOCIETY TECHNOLOGIES
(IST)
PROGRAMME

Project I15T-2001-33562 MOWGLI

Report n. D6.a
An Interactive Algebra Course with Formalised Proofs
and Definitions

Andrea Asperti, Herman Geuvers, Iris Loeb, Lionel Elie Mamane, Claudio Sacerdoti-Coen

Project Acronym: MOWGLI
Project full title: Mathematics On the Web: Get it by Logic and Interfaces
Proposal/Contract no.: IST-2001-33562 MOWGLI

MoWGLI, IST-2001-33562

Contents

[1__TIntroduction

B.2 Coercions handling

|;3,2.| [hed ¢ stvlesheetl oo,

3.2.2 TDA-in-Helm enhancementd« o o i e e

3.3 TIn-line Rendering

PEESY -

KU1 TIndependent productd
K2 Context dependent rendering oo
U4 Using reflection o o oo e

I5__Conclusions
|5 1 Analvsig

17
17
17
17
18
18

19
19
19

MoWGLI, IST-2001-33562 3

1 Introduction

One of the aims of the Mowgli project is to develop the functionality to generate web-based interactive
mathematical documents out of a repository of formal mathematics. One of the test cases that was defined
for Mowgli was the applicability for course notes. The present report describes and discusses this test case.

The first issue was to discuss what exactly to develop. In Mowgli, we had already developed the Helm
functionality, allowing to extract an XML encoding out of a piece of mathematics that is formalised in the
proof assistant Coq. Furthermore, we had already developed the functionality to generate semantical and
presentational mark-up (using style sheets) for such an XML encoding of formalised mathematics. Finally,
we had a large repository of Cog-formalised constructive mathematics, C-CoRN [4], existing of basic algebra
and analysis.

The — maybe most obvious — idea of just using the Helm functionality to extract web-based documents
out of the C-CoRN repository didn’t seem to be the right way to proceed: a set of course notes has its own
build-up, which is directed by the rules of pedagogics and clarity of exposition and which may be orthogonal
to the order that is derived from the formal repository. We therefore decided that we would start from an
existing set of course notes. For this we took IDA [2], an interactive course on algebra, which has been
developed at Eindhoven University of Technology (NL), for first year math. students. The course notes
consist of a book with a CD-rom. (Before the book + CD-rom were published by Springer, beta-versions
of the material were available through the web.) The material on the CD-rom is the same as in the book,
but there is additional functionality like

e Alternative ways of browsing through the book,

e Hyperlinks to definitions and lemmas,

e Applets that show algorithms (e.g. Euclid’s algorithm),
e Multiple choice exercises.

As the IDA course notes have been developed over the years in the context of a first year class on
algebra, we felt that this would provide the right set up for our test case. What IDA does not provide, and
something that the Mowgli tools should be able to add, is a formal treatment of proofs. Proofs in IDA are
like proofs in ordinary math. text books: plain text. Something else that the Mowgli tools should be able
to add is a formal treatment of definitions and lemmas, which should become formal objects that can be
rendered as ordinary mathematics. Moreover, the hyperlinks (in IDA) to definitions and lemmas should
now become hyperlinks to these formal mathematical objects.

So our concrete goal was to use the Mowgli tools to generate formal content in IDA in the following
ways.

1. Let the mathematical statements (definitions and lemmas) be rendered by the Mowgli tools out of
the formal statements in C-CoRN,

2. Let the proofs in IDA be rendered by the Mowgli tools out of the formal proofs in C-CoRN,

3. Let the examples in IDA be rendered by the Mowgli tools out of the formal definitions and lemmas
in C-CoRN;,

4. Let the hyperlinks (to definitions and lemmas) in IDA be rendered by the Mowgli tools out of the
formal links in C-CoRN.

So we certainly do not expect the Mowgli tools to be able to generate a set of course notes out of a repository
of formal maths, but we do expect them to be able to generate the necessary links and to do the proper
rendering.

MoWGLI, IST-2001-33562 4

How to evaluate the Mowgli tools on the basis of this experiment? The following issues are relevant to
look at.

e Are the above possible at all.

e What is the quality of the rendered statements, compared to the original statements in IDA. (Mathe-
maticians have various, often implicit, notational standards that they use very flexibly. Can we mimic
that?)

e What is the quality of the rendered proofs, compared to the original proofs in IDA. (Mathematical
proofs have a lot of hidden details that our tools should be able to show on demand. Can we do
that?)

e How user friendly is this. (What should an author, say someone that is writing the new version of
IDA, do to achieve all this?)

In this report we will discuss the technical aspects of our work and then we will draw some conclusions.
An important part of the work was to produce the style sheets that do the rendering. That is described
in Section B4l As we wanted to connect IDA to the formal content of C-CoRN, we had to make sure
that the material of IDA was covered by C-CoRN. This was not the case, so we had to extend C-CoRN.
Most notably, mathematical course notes contain many examples, e.g. after the notion of “semi-group” is
introduced, it is shown — as an example — that (IN,+) forms a semi-group. In C-CoRN, this amounts to
introducing an explicit definition of the structure (IN, +) of type “semi-group” (which involves proving that
+ is associative etc.) Also the constructive aspect of Coq (and C-CoRN) involved a bit of extra work, as
some of the statements in IDA are not constructively provable, so we had to change them a bit. In Section
we will discuss the technical aspects of the work and in Section B we will discuss the whole work: what
are the pros and cons of using a formal mathematical library for a set of course notes like IDA and what
are the conclusion with respect to the points raised above.

2 Formalising the mathematics

2.1 Handling non-constructive proofs

C-CoRN ([I]) is a library of constructive mathematics, and IDA (|2]) is a course in classical algebra, although
it has a special focus on algorithms. Because the structures in C-CoRN are all equipped with an apartness
relation, it meant that we had to prove more than has been proved in IDA. Instead of showing, for instance,
that some set with an operator and an equality was a semi-group, we had to define also an apartness relation
on this set and show that it was a constructive semi-group. So we had to do a bit more work, but in general
it did not trouble us much.

Only in one place the disagreement of IDA and C-CoRN concerning the logic was problematic: the
characterisation of cyclic monoids. First for every k,n € N, n > 0 a cyclic monoid Cj,, is defined. The
carrier of this monoid is the set {e,c,...,c*™ 1} and the operation is defined as follows:

e ddxcl=0T if j+i<k+n;
o ¢Jxcl = ck+((j+i_k)m0d”), ifj+i>k+n-—1;
o ”is the unit e.

Figure 21l shows a visualisation of the orbit of e under *c.

MoWGLI, IST-2001-33562)

Figure 1: The orbit of e

Theorem 2.1 (Characterization of cyclic monoids.) Every cyclic monoid is isomorphic with either
Ci. for certain k,1 € N or (N, +,0).

We will show with a Brouwerian counter-example, that this is not true constructively.

Counterexample 1 Let kog be the escape number of w. Define M = {n|n € N|n < kog}. Define the
operation xy; by:
1*p] =1+ 7 mod kgg.

Then it is clear that (M,%*5;,0) is a monoid. But saying that (M,*yr,0) is isomorphic with either Cy,
for certain k,l € N or (N, +,0) implies that the decimal expansion of m contains a block of 99 nines or it
doesn’t, which is audacious.

Because we could not thus have any hope to prove this theorem in Coq in the form it was presented in
IDA, we have adapted the theorem such that it could be proved therein. To understand our adaptation, it
is explanatory to study the structure of the original proof.

Proof Suppose that (C, *,e) is a cyclic monoid generated by the element ¢ of C. We make the following
case distinction.

e There are k < [with ¢ = ¢

Let k and [be the smallest pair (in lexicographical order) with this property.
(construction of a map from Cj, for certain k,n € N to C' and a proof that it is an isomorphism)

Hence C' is isomorphic with Cj,,, for certain k,n € N.

e There are no such £ and /.
(construction of a map from N to C' and proof that it is an isomorphism)
Hence C' is isomorphic to (N, +,0).
Maybe the first thought that comes in mind is to require the decidability of the equivalence relation.

But this is not enough to justify the case distinction (see Counterexample [[l). Therefore we have split the
theorem in two and we have considered the parts separately:

MoWGLI, IST-2001-33562 6

e Every cyclic monoid generated by an element c such that there are k < [with ¢* = ¢ is isomorphic
to C,, n, for certain n,m € N.

e Every cyclic monoid generated by an element c such that there are no k < [with ¢* = ¢! is isomorphic
to (N, +,0).

To prove the first part, it seems enough at first sight to require the decidability of the equivalence
relation, because when we know there are k < [with ¢* = ¢, it enables us to conclude there is a smallest
pair with that property, i.e.

there are k < [such that ¢ = ¢ and for any ky < ly: if (ki, 1) < (k,1), then ¢ #£ ¢t

However, because we have to prove strong version of injectivity of the function constructed in the proof,
we would like to have a stronger assumption at our disposal:

there are k < [such that ¢* = ¢ and for any ky < I: if (ky,{y) < (k, 1), then c*#c",
or equivalently
there are k < [such that c® = ¢ and for any ky # I,: if (ki,1y) < (k, 1), then ™ #c".

This seems provable from the decidability of the apartness relation. To make it easy on ourselves, we
have not assumed the decidability of the apartness relation and proved this property, but we have assumed
this property immediately.

The proof of the second part is now straightforward. So the theorem we have proved eventually in Coq
is:

Theorem 2.2

Part I Every cyclic monoid generated by an element c such that there are k < | with ¢* = ¢ and for all
ky # 1z if (ky, 1) < (k, 1), then c*#tch, is isomorphic to Ch, p for certain n,m € N.

Part II Every cyclic monoid generated by an element c such that for all k < 1: 4, is isomorphic to
(N, +,0).

2.2 Stripping Type valued universal quantifications of lemmas

As discussed in [3], for computational reasons the C-CoRN library has two types for propositions: Prop and
CProp. At first CProp was a synonym for Set, but later, when for good reasons the type of CSetoid became
Type, CProp had to change to Type too. We work in this way with synonyms to distinguish data-types (in
Set, Type) from propositions (in Prop, CProp). This difference is crucial for a good rendering.

Right from the start the rendering of propositions in HELM gave problems. Because the XML ex-
portation unfolded the type CProp, many propositions were presented like definitions. But even when the
exportation module had been improved such that explicit casts to CProp were reflected in the XML, some of
the propositions were still printed wrongly. The cause of these errors appeared not to lie in the exportation
module or in any part of HELM. The problematic propositions appeared simply not to have type CProp,
but to have necessarily type Type instead.

This is the II-rule for types in Coq:

I'-A:Type, i<k T z:AF B:Type, j<k
I'E1lz : A.B : Type,

MoWGLI, IST-2001-33562 7

Now, CProp is Type. This means that CProp is Type; for a fixed — but to us unknown — number j. The
carrier of a CSetoid has type Type. But opposed to CProp, this Type is not fixed. We allow the carrier of
a CSetoid to have type Type; for any number i. A statement like

Variable S:CSetoid.
Lemma ap: forall (x y:S), x[#ly.

can be understood as follows. Take an arbitrary CSetoid S. The carrier of S is of type Type; for a certain
number 7. The sort of ap is now Typey, for a certain number k. We can not force the sort of ap to be CProp,
or in other words: we can not force k& to be j, because we have taken an arbitrary CSetoid. Once this
lemma has been proved and the section has been closed, we can instantiate S with any CSetoid, also with
ones of type Type; where ¢ > j. So the idea to have all data-types in type Type or Set and all propositions
in type Prop or CProp, can not be realised with the current definitions of C-CoRN.

To see our lemmas as lemmas and not as definitions in HELM, we have applied a “trick” in the Coq file.
Whenever we see a universally quantified computationally relevant proposition, we have put this lemma in a
section and we have stripped of all quantifications and made them into section variables until the remaining
lemma had type CProp. So for lemma ap this would be:

Variable S: CSetoid.
Variable x y: S.

Lemma ap: x[#]y.

To come to a more satisfactory solution, it has been proposed to make the type universes in C-CoRN
explicit, in such a way that the types of data-types are all lower than CProp. This has yet to be explored.

3 Helm enhancements during IDA-in-Helm

3.1 Links

As hypertext documents, Helm documents contain links to other (Helm or non-Helm) documents. The archi-
tecture of the system, encoding the whole state of the user session in the URL, means that author-level URIs
(the addresses the author of the document writes in the links of his document), like cic:/CoRN/algebra/foo
have to be dynamically rewritten to system-internal URLs (the address the user’s browser sees, an uwobo
request), like http://mowgli:5081/apply?keys=. ..

Before this “validation for education documents” effort, such links could only be pointing to other Helm
documents, they had to be absolute links and these links had to be “normal” XHTML links (A tags with
an HREF attribute): the machinery was rewriting all and only A/HREF tags. IDA suffered from both these
limitations: First, it contains document parts not be helmised, such as images, javascript code and java
code, that are included in the document by reference. Second, its intra-document linking is done through
a pull-down menu and not “plain” XHTML links.

The helm URI-to-URL rewriting engine thus needed two extensions:

e The ability to have (relative or absolute) links to non-Helm resources. These relative links have to
be relative to where the “raw” Helm document is (where the getter gets it from) and not relative to
the URL seen by the browser, namely an uwobo service request. They thus have to be rewritten to
absolute URLs for the browser.

e The ability to have links to Helm documents more or less anywhere, not only in HREF attributes.

MoWGLI, IST-2001-33562 8

This has led us to redesign the URI-to-URL rewriting engine to act only on an explicit request, in form of a
helm:helm_link or helm:external_link attribute to any node; the value of this attribute gives the name
of the attribute of the same node that needs to be rewritten. In this way, any attribute of any XML node
can undergo URI-to-URL rewriting. The getter now puts an xml:base tag in the document giving where
it got it from, and the rewriting engine uses that information to unrelativise relative links.

3.2 Coercions handling
3.2.1 The d_c stylesheet

The d_c (for “drop coercions”) stylesheet is a preliminary step to the CICML — MathML Content trans-
formation that gets the rest of the chain rid of a Coq technicality, namely coercions.

Coercions are essentially a way to get around the lack of subtyping in the type theory behind Coq, the
CIC. They are essentially “type casts”, a function that maps a of type A to its canonical counterpart in
type B. For example, it extracts the (additive) group from a ring.

Coercions are often inserted automatically by the system (hence the user doesn’t type them) and typi-
cally not shown by Coq in its communication with the user. But the XML export of the Coq terms Mowgli
deals with being at the “under the hood” level, they do show up in the terms Mowgli gets. Having no real
significance for the “general mathematics” reader (as opposed to the “Coq user” reader) Mowgli aims at as
an audience, these coercions are removed from the terms the proof-system-generic part of the system gets
to see.

3.2.2 IDA-in-Helm enhancements

In the course of converting extracts from IDA, some rendering bugs were discovered and traced back to
d_c, as well as the need to drop more coercions. Upon trying to understand what the existing code did
to expand and correct it, the author realised that all the different bits of code treating different coercions
seemed to actually aim at the same thing, except for simplifications the author of the code judged to be
made possible by the type of the coercion, like e.g. the number of arguments it can be applied to. The
latter assumption being proved to be sometimes incorrect (and the source of the observed rendering bugs),
the treatment of all coercions has been factored into a generic template that always treats the “full generic
case”, without any simplifying assumptions.

Additionally, coercions applied to functional values would sometimes give unreasonable results that
would break expectations of code downhill in the processing chain. At the CICML level, function application
is a tree whose root node is APPLY, the first child is the applied function and the subsequent children are the
arguments to the functionll. Here is for example the term corresponding to f applied to a and b (usually

written as (f a b) (or, more classically, f(a,b)): APPLY
T
f a b
If f is a coercion, dropping that coercion means producing the term APPLY
P
a b
Now, what if a is itself an APPLY? We then get in to this situation: APPLY
/\
APPLY
P
c d
This is mathematically equivalent to APPLY
T
c d b

! The situation at the MathML Content level is very similar, with slightly different names being used)

MoWGLI, IST-2001-33562 9

This latter form is actually the one generally expected by rendering code, because it is the one created b
Coq’s CICML export. The d_c stylesheet has thus been adapted to produce the latter and not the formerg
Alas, the algorithm to do that breaks a design choice of XSL, namely that a result cannot be re-used as
input. As most current implementations provide an extension that “corrects” this design limitation, we
chose to deviate somewhat from the standard and make use of this extension.

3.3 In-line Rendering

A typical mathematical document will not only contain raw, precise, rigorous mathematics, but also sen-
tences whose meaning is more fuzzy or non-mathematical, somewhere in the range between normal English
text and rigorous mathematics. This “free text” can contain for example historical remarks or remarks such
as (in a teaching textbook)

Many students at first believe that this and this is true, but be aware that it is not, as we will
show through counter-example of vector spaces of infinite dimension, such as R [X], in section
so and so on page so and so.

or (to take a real example from a real published book, namely []])
Moreover, the functors that are continuous are not difficult to describe.
or

Most binary operations in which we are interested distinguish themselves from arbitrary ones
in that they have the following property.

The meaning of “many students at first believe”, “not difficult to describe” or “in which we are interested”
cannot be expressed in a theorem prover and escapes its checking framework, but they are still an important
part of a mathematical document. And these bits of text speaks about and refers to formally defined
mathematical notions (“continuous functors”, “binary operations”). It is thus desirable to be able to have
free-form (non proof assistant checked) text that nevertheless uses names and notations of the proof assistant
checked “library of mathematics” the document is about.

This was previously not possible in the Helm system, because the only way a document could refer
to a mathematical notion is by including its whole definition, as a separate paragraph, right there in the
document. We have thus implemented the possibility to ask to have a rendering that

e integrates in a sentence, as a word or phrase, instead of being its own paragraph. We call this the
in-line rendering.

e Misses / contains some parts of the definition of the object that are included / not included by default,
such as the name of the object, the body of the definition or the notation for the object.

These choices are all independent, although not all combinations make sense and will give a reasonable
result. Syntactic shortcuts have been added for common combinations such as “only the notation for the
object, in a way that integrates in a sentence”, i.e. the notation for the object as a single word, without
any paragraph break.

Let’s note, however, that in the IDA-in-Helm effort the in-line rendering has been used also for statements
that do have a precise mathematical meaning, but where some particular expression of it was necessary for
the general flow of the document, to rise from the level of “sequence of mathematical statements” to the
level of “document that tells a story”. Let’s take a concrete example, the very first sentence of the chapter
we treated:

2This in turn broke the expectations of some other rendering code, but this looked easier to fix than rewriting all the code
to handle all different possible encodings of this construct.

MoWGLI, IST-2001-33562 10

The map that takes an element of Z to its negative is a unary operation on Z, while addition
and multiplication are binary operations on 7Z in the following sense.

14

This says the same, mathematically, as “—7 is a unary operation on Z and +j is a binary operation
on 7Z and x*z is a binary operation on Z”, which is (approximately) how Helm would have rendered to
corresponding formal mathematical statement. Linguistically, however, several elements would have been
lost there: “while” expresses an opposition that - while mathematically equivalent to a conjunction - is
not equivalent as far as quality (e.g. ease of reading, clarity of point) of the document is concerned. A
document making absolutely no use of that kind of subtleties of language would, indeed, be quite “dry” and
hard to read for a human. Notice, too, the contraction of “+7 is a binary operation on Z and %z is a binary
operation on Z” into “+7 and %z are binary operations on 7Z”.

One can theoretically imagine a Helm-like mathematical document production system having a sen-
tence synthesis engine flexible enough that it can generate the (or a good part of the) full spectrum of
sentences expressing the same mathematical statement without endangering safety of the generationﬁ, and
thus removing the need for that kind of use of informal text about formal notions. First, that kind of
perfect system seems to be a very long-term possibility, with no satisfying, usable implementation known
yet. Second, it would still not remove the need for informal text about formal notions, and thus in-line
rendering, like the first examples show.

3.4 Automatic generation of the notational stylesheets
3.4.1 Introduction

It is very advantageous to generate the notational stylesheetﬂ. First of all it facilitates the user’s work.
Instead of writing the stylesheets in XSLT himself, and providing the system with all variations of templates
that it needs to represent one single mathematical object in different contexts, he now has to write with
each mathematical object only one description, concerning mostly mathematical properties of that object,
in an easy XML language. From that single description all templates are generated automatically.

Secondly it makes it easier for the developer of the system too. Choices of style, for example “do not
underline links in mathematical formulae”, are made in the meta-stylesheets in a few places at most. So
changes or improvements of these have to be done only there, and not in every single template of the
stylesheets as it would have been the case without automatic generation.

3.4.2 First implementation for automatic generation

The first implementation for automatic generation of the notational stylesheets has been done by Pietro Di
Lena and has clearly been recorded in [5] (in Italian). His work includes the definition of a simple XML
language for the user, the definition of an intermediate XML language, used by the system, stylesheets from
the user’s input to the intermediate level, and meta-stylesheets from CIC-XML to MathML-Content, and
from MathML-Content to both HIML and MathML-Presentation. He has also tested his implementation
on a small sample of mathematical objects.

Example 3.1 This is the code taken from the file set.xml written by the user, that defines the notation
for intersection.
<Symbols type="HTML">
<symbol tag="intersect" priority="70" associativity="left">
<case type="symbol" value="Ç"/>
<case type="unicode" value="∩"/>

3that what the generated sentence says is indeed what the formal mathematical statement says
4The stylesheets responsible for generating the right notation for a specific notion, like e.g. R for the set of real numbers
or a + b for the addition of a and b

MoWGLI, IST-2001-33562 11

</symbol>
</Symbols>

<Symbols type="MathMLPresentation">
<symbol tag="intersect" value="⋂" priority="70" associativity="left"/>
</Symbols>

<Operator
name = "INTERSECTION"
uri = "cic:/Coq/Sets/Ensembles/Intersection.ind#element(/1/1)"
cook = '"true"
arity = "2"
p-tag = '"intersect"
h-tag = "intersect">

<Notation type="MathMLContent">
<m:apply helm:xref="\root-id">
<i:op tag="intersect"/>
<i:param id="1" mode="set"/>
<i:param id="2" mode="set"/>
</m:apply>
</Notation>
</0Operator>
The first two paragraphs have been written on the top of the file and define the appearance of the intersect-
tag both for HTML and MathML-Presentation. The last paragraph is the description of the operator. The
user has to give a name (name), and the exract place where the operator has been defined (uri). The
intersection has been defined inductively. That makes it necessary to add #element(/1/1) to the path.
Would the user have wanted to define notation not for the intersection, but for its first constructor, then
the last part of the uri should have been #element (/1/1/1). Then the user says whether the operator has
been defined inside a section (cook). That is the case here. The number of arguments is 2 (arity) and
there are mo implicit arquments. If there were, they could have been taken into account with the help of
the hide-attribute. Then the system is told to use the newly defined intersect-tags when appropriate (p-tag
and h-tag). Finally, the user describes what the MathML-Content should look like. Because there is no
pre-defined tag for intersection, the user has to put some effort into this. Note that this description refers
to the arguments of the operator.
From this, stylesheets are made from CIC-XML to MathML-Content and from MathML-Content to
HTML and MathML-Presentation, that handle the case that this operator is used inside the section of
definition as well as the case that it is used outside.

This implementation has appeared very useful. It even covered some unforeseen uses (see B43). It has
served as a core for further developments.

3.4.3 Changes

Although this implementation was well-considered, a big, thorough test was lacking. So when we tried to
use it, we not only ran into some bugs, but we also encountered some situations of which the programmers
had not thought. This forced us to carry some changes through. Besides that, we have made some changes
and added some ideas purely for the convenience of the user. These adaptations affect the definition of
the input XML language, the definition of the intermediate XML language, the meta-stylesheet from CIC-
XML to MathMLContent, the meta-stylesheet from MathMLContent to HTML, and the arrangement of
the input files.

MoWGLI, IST-2001-33562 12

We have not changed the meta-stylesheet from MathMLContent to MathMLPresentation. Most present-
day browsers do not render MathMLPresentation in a satisfactory way. Moreover, the HELM system does
not use the generated stylesheets from MathMLContent to MathMLPresentation. It uses some general
hand-made stylesheets instead ([6]). So when time urged us to make some choices, we decided to ignore
these meta-stylesheets.

Notation inside and outside sections As already shown in Example Bl the attribute cook is used
to store information about whether the definition is made inside or outside a section. When a definition of,
say, a mathematical operator is made inside a section and it is applied outside the section of definition, the
CIC-XML of the applied operator looks different than when it would have looked if it were not defined inside
a section. Because the section can contain variable declarations, the definition made within a section can
rely on those variables, without explicitly mentioning them as arguments of the operator. Is this operator
fully applied outside the section, then these variables get instantiated. The instantiation of variables is not
seen as application.

Example 3.2

Section S1
Variable A : CSetoid.
Variable B : CSetoid.

Definition product_inside : CSetoid.
<definition using A and B>
Qed.
End S1.

Definition product_outside : forall (A B:CSetoid), CSetoid.
<definition using A and B>

Qed.
Section S2.

Variable C : CSetoid.

Variable D : CSetoid.

Lemma iso : (isomorphic (product_inside C D) (product_outside C D)).
End S2.

In the first section, S1, two variables, A and B are declared. Then the definition of product between con-
structive setoids, product_inside, is given using these variables. Qutside this section, another definition
of product between constructive setoids is given (product_outside). The definitions are used similarly in
Lemma iso in the section S2.

The CIC-XML that codes the application of these operation in this lemma differs. The CIC-XML code
that codes (product_inside C D) is:
<APPLY>

<instantiate>
<CONST uri="cic:/CoRN/algebra/CSetoids/product_inside.con"/>
<arg relUri="S1/A.var">
<VAR uri="cic:/CoRN/algebra/CSetoids/S2/C.var"/>
</arg>
<arg relUri="S1/B.var">
<VAR uri="cic:/CoRN/algebra/CSetoids/S2/D.var"/>
</arg>

MoWGLI, IST-2001-33562 13

</instantiate>
</APPLY>
whereas the CIC-XML code that codes (product_outside C D) is:
<APPLY>
<CONST uri="cic:/CoRN/algebra/CSetoids/product_outside.con"/>
<VAR uri="cic:/CoRN/algebra/CSetoids/S2/C.var"/>
<VAR uri="cic:/CoRN/algebra/CSetoids/S2/D.var"/>
</APPLY>

So this information is crucial for the correct generation of the stylesheets.

The user could say only whether a definition has been given inside a section. If this was the case there
was no way to say on how many variables it relied. This means that it was not possible for the user to
refer to these variables when he defined how this operator should be rendered. They were automatically
rendered not unlike implicit arguments. This is a very practical solution, because the variables are never
instantiated when one uses the definition in the same section it is defined in, and now the user could suffice
with giving just one description of the rendering, that was used to generate the templates both for use
inside the section and for use outside.

The result, however, was not very satisfactory. The choice to let a definition depend on variables seems
to be influenced more by convenience and programming style, than by thoughts of the rendering. So we have
changed the cook-attribute to have a numerical value. This also affected the meaning of the hide-attribute.
At first the hide-attribute indicated the number of implicit arguments, now it indicates the number of
implicit instantiations and arguments. (Implicit objects are always assumed to precede the explicit ones).
Note that when the value of the cook-attribute is bigger than the value of the hide attribute, the user has
to describe two different renderings: one for inside the section and one for outside, marked respectively by
cooked = "false" and cooked = "true" (default).

Example 3.3 The following describes a rendering for product_inside, assuming that \A, \B, and \times
have already been defined. (MathMLPresentation has been omitted.):

<Operator
name = "PRODUCT"
uri = "cic:/CoRN/algebra/CSetoids/product_inside.con"
cook = "2"
arity = "O0" >

<Notation type="MathMLContent" cooked='"false">
<m:apply helm:xref="\root-id">
<i:op tag="times" definitionURL="\uri"/>
<i:op tag="ci" definitionURL="\uri" bsymbol="A">A</i:op>
<i:op tag="ci" definitionURL="\uri" bsymbol="B">B</i:op>
</m:apply>
</Notation>

<Notation type="MathMLContent">
<m:apply helm:xref="\root-id">
<i:op tag="times" definitionURL="\uri"/>
<i:param id="1"/>
<i:param id="2"/>
</m:apply>
</Notation>

<Notation type="HTML" cooked="false'">

MoWGLI, IST-2001-33562 14

\A \times \B
</Notation>

<Notation type="HTML">
<o:param id="1"/>\times<o:param id="2"/>
</Notation>
</0Operator>
Now, product_inside will be printed inside the section of definition as A x B, and if the variables are
instantiated outside the section, say by C and D, it is rendered as C' x D.

Use of mathematical objects in various grammatical ways The examples we have seen so far are
all quite complicated. Let us now have a look at the most basic example.

Example 3.4 Assuming the plus-tag has already been defined for HITML and MathMLPresentation, the
following defines the rendering for the addition operator:

<Operator
name = "PLUS"
uri = 'cic:/Coq/Init/Peano/plus.con
| cic:/Coq/ZArith/BinInt/Zplus.con"
arity = "2"
c-tag = "plus"
p-tag = ‘"plus"
h-tag = "plus"/>

From the information given in Example B4 all stylesheets are generated that take care of the expected
rendering of the addition operator, provided that it acts on two arguments. So linguistically speaking, the
stylesheets will only apply if the operator is the “subject” of the mathematical term. It will not apply, for
example, to a term like (commutative plus), because here commutative is the subject, and plus is acted
upon. But even though plus is an “object” here, we would like to render this term as “4 is commutative”.
So we would like the stylesheets to apply.

To this end, we have extended the set of attributes of Operator with object, which has a boolean
value. Default value is object = "false", that will generate the same stylesheets as before; when object
= "true" also stylesheets that apply in the object case will be generated. We have extended the set of
attributes of Notation accordingly: to describe the notation in the object case, add arity_0 = "true".

Observe that in the worst case, i.e. we want the stylesheets for the object case and our operator is
defined within a section (see section B-Z3), it can occur that the user has to give four descriptions for each
type of notation (MathMLContent, MathMLPresentation, HTML).

Non-linear transitions Many times there is a 1-1 correspondence between the arguments in the CIC
representation of a mathematical operator and the arguments in its final rendering. If this is the case, we call
the transition linear. For instance, we would like to see “(plus x y)” as “(z +y)”. In both representations
the addition has two arguments and they are linked with each other in the obvious way.

It also quite often occurs that the final rendering contains less arguments than the CIC representation.
This happens for example in the case of strict implicit arguments: one or more arguments are not, printed,
but they could be recovered from the arguments that are shown. For readability, we have chosen to also
allow non-strict implicit arguments: we throw arguments away that can not be recovered from the remaining
information. The function cf_div, for example, expects not only a field, a numerator and a denominator,
but also a proof that the denominator is apart from zero. We do not need to record the field, because we
can restore it from the types of the numerator and the denominator. So we take this as a strict implicit
argument. But also the proof that the denominator is apart from zero we throw away, because this is

MoWGLI, IST-2001-33562 15

not often seen as an argument in a standard mathematical text. This proof can not be restored from the
remaining information. It is not sure that this is the right thing to do.

In our sample, it happens, though rarely, that we would like the final rendering to have more arguments
than the CIC representation, i.e. we would like to see an argument more than once. For example the
semi-group of constructive setoid functions, FS_as_CSemiGroup, takes only one element, that we like to
render twice: “(FS_as_CSemiGroup S)” should be printed as “S — S”. And it was not possible to generate
stylesheets to take care of this.

It was a technical problem that restrained us from generating these stylesheets. One of the generated
stylesheets computes the length of the output string. In this stylesheet the length of each argument is stored
in a variable. Such a variable took the name of the serial number in the CIC representation of the argument
which length it holds. So, in our example, the variable that stores the length of S, would have been called
charcount_param_1, because it refers to the first argument of FS_as_CSemiGroup. But because we want
to see this argument twice, a variable with this name was also defined twice. It is not allowed in XSLT to
define a variable in the scope of another variable with the same name.

We have solved this by giving the variable the name of the serial number in the HTML presentation of
the argument which length it holds.

Notation for variables Although it was possible to generate stylesheets that took care of constants,
inductively defined objects and even constructors, there was no way to do that for variables, too. But
according to our experience, a nice rendering of variables increases the readability. Therefore we have
adapted the meta-stylesheets to handle also variables.

Central definition of symbols As shown in example Bl the files from which the meta-styleheets take
their data to generate the stylesheets, started with the definitions of the required tags: HTML tags for both
symbol and unicode font and MathMLPresentation tags. These tags were used in the files that hold the
stylesheets from MathMLContent to HTML and from MathMLContent to MathMLPresentation. So when
we look in the file html_set.xsl, we see the following variables:

<xsl:variable name="set_intersect">
<xsl:choose>
<xsl:when test="$UNICODEvsSYMBOL
<xsl:when test="$UNICODEvsSYMBOL
<xsl:otherwise>???</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:variable name="set_intersect_priority" select="70"/>
<xsl:variable name="set_intersect">
<xsl:choose>
<xsl:when test="$UNICODEvsSYMBOL
<xsl:when test="$UNICODEvsSYMBOL
<xsl:otherwise>??7</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:variable name="set_intersect_priority" select="70"/>

’symbol’ ">Ç</xsl:when>
’unicode’ ">∩</xs1:when>

’symbol’">Ç</xsl:when>
’unicode’">∩</xs] :when>

(Note that the user has given the codes for the unicode and the symbol sign in decimal notation in this
case, and that HELM has made hexadecimal notation out of it.) These variables are referred to only inside
this file, as the names of the variables reflect.

The fact that the tags were only defined for the file they have been put in, was often a disadvantage.

MoWGLI, IST-2001-33562 16

Sometimes one needs the same symbol in two files and hence one had to define the same tags several times.
To overcome this, we have put all tag definitions in one file, HTML_SYMBOLS.xml, and we have included this
file — after a little transformation — in every other .xml-file.

So, an advantage of this approach is that the user needs only to define his symbols once. Or maybe even
better: if we ourselves put the most common symbols in this file, say all LaTeX symbols with the names
used in LaTeX, there would be hardly any need for the user to define any symbol at all.

There are also several disadvantages. Firstly, to include the symbols-file in every other .xml-file, we have
used the XInclude package, which is an extension of XML that is not universally implemented. Secondly,
at first an html *.xsl-file contained only the tag definitions it really needed, and now an html *.xsl-file
contains all tag definitions. So the files have become bigger.

Both these disadvantages could probably be remedied by including the symbols in a much later state, in
an XSLT file instead of in the XML files. To do this, another adaptation of the meta-stylesheets is required.

Natural language generation Although the generated stylesheets were only used to translate CIC-
expressions to their usual mathematical symbolic rendering, for instance to replace “plus” by “+”, the
machinery seemed able to generate stylesheets to produce a bit of natural language too. So now the gener-
ated stylesheets transform “(commutes plus nat)” into “+ is commutative on N’ with links from “+” to
the definition of “plus”, from “N” to the definition of “nat” and from “is”, “commutative” and “on” to the
definition of “commutes”. To get the links right, we have made extensive use of the attribute “bsymbol”.

This is the XML description for the rendering of commutes:

<0Operator
name = "IS COMMUTATIVE"
uri = 'cic:/CoRN/algebra/CSetoids/commutes.con"
cook = "1"
hide = "o"
arity = "1">

<Notation type="MathMLContent">
<m:apply>
<i:op tag="csymbol" bsymbol="is,commutative,on">is_commutative</i:op>
<i:param id="1"/>
<i:param id="2"/>
</m:apply>
</Notation>

<Notation type="HTML">
<o:param id="2"/> \is \commutative \on
 <o0:param id="1"/>

</Notation>

</0Operator>
where \is, \commutative and \on have been defined in the file HTML_SYMBOLS.xml as follows:
<symbol tag="commutative" value="commutative"/>

<symbol tag="is" value="is"/>
<symbol tag="on" value="on"/>

MoWGLI, IST-2001-33562 17

Besides that this is a rather onerous way to do something as simple as to print a part of a sentence, a
drawback is that we have to use the non-breakable space , since all breakable spaces are removed
as part of the XSLT process. This severely limits the possibilities the user’s browser has to break lines and
in some cases leads to unbalanced line lengths or even a line being longer than the browser’s window is
wide.

At the moment, we have only generated natural language for mathematical operators. Logical operators
are still presented symbolically. So we see “A” and “—”, instead of “and” and “implies”. Maybe these would
have to change too. Then our presentation would be more uniform in style.

4 Discussion

4.1 Independent products

In mathematical vernacular, assuming an hypothesis and introducing an arbitrary element of a set is usually
seen as two different concepts. But in type theory, the framework common to many theorem provers, they
are folded into a unified concept, a II-product. The difference between these two concepts is whether the
product is dependent or independent. As the aim is that the output of helm be as close as possible to
mathematical vernacular, these concepts have to be separated again at the rendering level, so that they
can be rendered differently. This turns out to be extremely hard at this level in XSLT, and we thus rely on
heuristics to approximate this decision.

4.2 Context dependent rendering

The rendering of mathematics in the document does not have a notion of before and after: mathematical
objects are printed the same, independently of where they occur in the document. This does not seem to
be always what one wants. In the theory of semi-groups, for instance, first the notion of being a unit is
defined and after that the uniqueness of the unit in semi-groups is proved. So when we state the uniqueness
of the unit, we would like to speak about “a unit”, because the uniqueness has not yet been established:

Lemma 4.1 VS:CSemiGroup.Ve:SNf:S. e is a unit of SAf is a unit of S—e=f

(Note that this does not come close to the way it is formulated in the original IDA; there it simply reads
“A semi-group has at most one unit”.) But after we have proved the uniqueness, we would like to see “the
unit” in all following uses.

What is more, web documents do not have to be linear like a book. It is well thinkable that there is
more than one route through the document. This clouds the desired notion even more.

It has also been argued that this is not really a problem, because differences in the English language
— like “a” and “the” here — reflect also a difference in the mathematical meaning: “a unit” would denote a
relation and “the unit” would denote a function. So, it has been proposed to use “a” whenever we see the
relation, and to use “the” whenever we see the function. However, it is not clear that the correspondence
between the English language and the mathematical meaning is as straightforward as suggested here. It
is not a mistake to use the relation even after uniqueness has been established, but to use the indefinite
article in English while we know the uniqueness, seems highly unusual.

4.3 Moving mathematical objects

The order in which the HELM system forces the user to make the document, i.e. first formalise the
mathematics and only after that describe its rendering is quite inconvenient. Because in this fashion the
mathematics is completely separated from the description, there has to be another a way to connect the
two. In HELM this link is made by the user, who writes in the XML description explicitly where the object

MoWGLI, IST-2001-33562 18

can be found. This means that whenever an object in the library moves, the user has to alter its XML
description.

And objects do move, because of the way we work with C-CoRN. First, when we start to develop a
theory, all objects are in our personal devel directory. And only later, when the development has been
completed, everything is transferred to the fast core of C-CoRN. So, the HELM system imposes us to either
write the XML description only after we have transferred everything, or to change all descriptions when we
move the objects.

4.4 Using reflection

HELM tries to make readable proofs out of the lambda-terms of the proofs. In general it can be doubted
whether this is a good decision and whether it would not have been a better idea to use the Coq-trees,
which reflect the tactic script, instead. But in one case it is very clear that working from the lambda-term
was not a good choice.

We have used in our formalisation some so-called reflection tactics. When one gives such a tactic a goal
to prove, it will look at the syntar of that goal and tries to solve this goal by calculating whether it has a
specific form. The lambda-term that such a tactic produces is in general unreadable and unlike anything
that can be found in a mathematics book. We would also like to omit this part of the proof in the HELM
rendering. It would not be missed, because mostly the “gaps” in the proof that thus arise do not exceed the
steps that a human leaves out. However, this can not be done in HELM, because there is now knowledge
about how parts of the lambda-term came to existence.

In the current HELM presentation we have tried to warn the reader by using angular brackets that some
reflection is going on.

4.5 Use of a formal library: economy vs. coherence

This research has not only been a test case for HELM and the way it presents formal mathematics, but
it has also been a test for the use of a formal library, especially C-CoRN, in a mathematical document.
The choice to use the mathematics in the library has some huge advantages: you can use everything that
is already in the library. In our case, not much from what we needed was present in C-CoRN when we
started: only about 20% from the definitions, lemmas and examples we have used in formal form in our
final document. Considering that the document covered about ten pages of basic mathematics and that we
have not replaced every definition, lemma or example, that seems a bit disappointing. But it has been very
useful to us any way, because many items that were missing in the library were fairly easy to formalise from
lemmas that were present. And by adding items to the library, we have made a contribution to future use.

So, in short, it is beneficial to use a library because it is economical: if something has been defined or
proved, it can be used over and over again. Nothing has to be done more than once.

However, there are also disadvantages of using a library for this purpose. It seems to neglect the
coherence of the document and it seems to destroy — in a weak sense — the existing coherence of the library.

A mathematical document usually answers a strict requirement: objects and lemmas are not to be used
before they have been defined or proved. Of course, sometimes a lemma, is used and is only proved later
at a more suitable place, but this is mostly announced in the surrounding text and this can be seen as the
use of a local assumption, instead of premature use of a lemma. But using an object or a lemma that is
unfamiliar by the reader without any explanation, can be seen as a mistake. By using a library, we have
paid no attention to this kind of logical coherence in the document. In the document we have put references
to the library and it could well be that the order of the references does not meet the logical order of the
corresponding items in the library. If we had not used a library, we could have taken the coherence into
account. We could have started from scratch by making Coq files that follow the structure of the document.

MoWGLI, IST-2001-33562 19

Because Coq guards the logical coherence of the mathematics, the logical coherence in the document would
be guaranteed too.

The fear for logical mistakes between items, as opposed to logical mistakes within items (proofs and
definitions), is not imaginary. In the ten pages of IDA that we have looked at, the logical coherence has
been violated several times.

Also C-CoRN has some kind of coherence: not only a formal coherence, but also an informal coherence,
introduced by the documentation. Here I mean by “documentation” the text surrounding the formal ob-
jects; the part of a Coq file that is not checked. Most of the time this text explains some difficulties or
particularities of the formalisation, but it also occurs, though not often, that the documentation and the
division of the file reflect the original goal of the formalisation. In these cases it is very hard to add similar
lemmas or even to use existing lemmas without changing the documentation. For example if one wants to
add a lemma to a section and the documentation reads “The last lemma of this section is about ...” or
one has used a lemma which is accompanied by a text saying that it is useful for a particular other lemma,
one has to update the documentation. Although a good, informal explanation of the mathematical line
of thought makes C-CoRN nice to read, there seems to be some tension between having a documentation
geared to the mathematical content, and the reusability of the library.

5 Conclusions

5.1 Analysis

The process of converting IDA to a Helm document consisted essentially in three activities:
e Formalising the mathematics of IDA in Coq.
e “Porting” IDA to the Helm framework.
e Enriching the Helm framework so that it could accommodate IDA.

While the first is essential to any approach based on formal mathematics, it is interesting to analyse how
much in the Helm enrichment was specific to IDA or how much was a generically useful improvement. Also,
it is interesting to see how much of the IDA “porting” was reasonably to be expected (let’s say similar to
importing a document from one word processor to another word processor) and how much would have been
a stretch of mind even for a document written from scratch for the Helm framework.

Most of the changes to Helm were actually quite generic. The only somewhat ad-hoc thing is the
“breadcrumbtrail” feature: a way to import IDA’s frame-based navigational system into Helm, which has
its own frame-based navigational system. As frame-based navigational systems are rather widespread among
web documents, even this feature is rather generic.

The Javascript code in IDA needed some very minor adaptationﬂ: it is generating links dynamically
(among others for images that change depending on the answer given in multiple-choice exercises) and these
had to be changed to make use of the xml:base tag the getter put in the document. The pages of IDA
themselves were old-style HI'ML, but Helm requires XHTML; this conversion was done automatically by
[7]. Again, these changes, while not all exactly expected, are not unreasonable.

5.2 Future Outlooks and remaining problems

During the work on IDA-in-Helm, there has been a continuous cooperation between the Nijmegen and
Bologna team to solve small bugs in Helm and make alterations. This has improved the system a lot.

5There are exactly three lines out of about 380 that were changed

MoWGLI, IST-2001-33562 20

On a higher level, it is clear that we don’t have the ideal tool for writing integrated documents yet.
For example, the document processing pipe line gives a feedback that is too long: only at the very end the
author can judge whether his alterations take the desired effect. Furthermore, the www/html/xml platform
is not yet mature enough for dealing with interactive mathematical documents, e.g. because MathML is
poorly supported, so a really nice rendering of mathematical formulas is not possible. It works quite well
for distributed libraries, but not so well for documents that should basically be read by a student on his
own computer.

5.3 Conclusion

Let’s now come back to the points that have been raised in the Introduction Section [[l We have achieved
the goals that we set ourselves: the statements and proofs of IDA are rendered by the Mowgli tools out
of the formal C-CoRN content and the hyperlinks in IDA are also generated out of the formal semantical
links in C-CoRN. So in that extent, the Mowgli tools are certainly successful: this prototype translation of
C-CoRN through Helm in IDA shows that these things are possible.

With respect to the quality of the rendered statements and proofs: The proofs are fairly good. They
contain quite a lot of detail (and therefore we have added some additional features for hiding information,
like leaving assumptions implicit), but the structure is clear and good and the folding/unfolding of subproofs
(to inspect a proof in finer detail) works very well. Proofs that are automatically generated (using a decision
tactic of Coq) become very ugly, but that’s unavoidable. (These proofs should be rendered in a special way,
disabling the possibility to inspect the proof.) The lemmas are also good, but the definitions are sometimes
a bit too Coq specific, containing \’s and words like “Record” and “Case”. But this is also partly a matter of
choice: either one wants to cater just for students (and then one could introduce a rendering that suppresses
the word “Record”), or one also wants to show, e.g. to Coq users, what ezactly the definition is, and then
we want to see “Record” with the names of the labels that are used. The “Record” case is an interesting
example in this respect, because, e.g. in the Record type that describes semi-groups, there is the property
of “being a right unit”, which has a name (a record label) “runit”, that we certainly don’t want to suppress,
because it is referred to later in proofs. So the case of what to suppress and what not is not so clear and
can’t be made generically.

With respect to the user-friendliness, the project has generated useful meta-stylesheets that can be
instantiated to generate stylesheets that do the transformation. These meta-stylesheets can be used very
well by persons that know HTML, MathMLContent and MathMLPresentation, which may seem like a
heavy requirement, but it’s unavoidable. (If you want to write nice KTEX symbols, you also have to know
the IXTEX codes.) For an author who is Cog-knowledgeable, it would be more interesting to let the MathML
be extracted from the Coq file. This is also possible, if one uses coqdoc to add documentation information
to Coq files.

References

|1] http://corn.cs.kun.nl/

[2] A. Cohen, H. Cuypers, H. Sterk, Algebra Interactive!: learning algebra in an exciting way, Springer
1999.

[3] L. Cruz-Filipe, Constructive Real Analysis: a Type-Theoretical Formalization and Applications, PhD
thesis, Nijmegen 2004.

[4] L. Cruz-Filipe, H. Geuvers and F. Wiedijk, C-CoRN, the Constructive Coq Repository at Nijmegen.
In: Andrea Asperti, Grzegorz Bancerek, Andrzej Trybulec (eds.), Mathematical Knowledge
Management, Proceedings of MKM 2004, Springer LNCS 3119, 88-103, 2004.

MoWGLI, IST-2001-33562 21

[5] P. Di Lena, Generazione automatica di styleheet per notazione matematica, Master’s thesis,
University of Bologna, 2002.

[6] 1. Loeb, Presentational Stylesheets, MoWGLI deliverable, 2003.
[7] HTML tidy by Dave Raggett, (©1998-2000 World Wide Web Consortium, http://tidy.sf.net/

[8] M. Niqui, Formalising Exact Arithmetic: Representations, Algorithms and Proofs, PhD Thesis,
Radboud Universiteit Nijmegen, September 2004, section 4.2, page 98.

	Introduction
	Formalising the mathematics
	Handling non-constructive proofs
	Stripping Type valued universal quantifications of lemmas

	Helm enhancements during IDA-in-Helm
	Links
	Coercions handling
	The d_c stylesheet
	IDA-in-Helm enhancements

	In-line Rendering
	Automatic generation of the notational stylesheets
	Introduction
	First implementation for automatic generation
	Changes

	Discussion
	Independent products
	Context dependent rendering
	Moving mathematical objects
	Using reflection
	Use of a formal library: economy vs. coherence

	Conclusions
	Analysis
	Future Outlooks and remaining problems
	Conclusion

