INFORMATION SOCIETY TECHNOLOGIES
(IST)
PROGRAMME

Project IST-2001-33562 MOWGLI

Report n. D2.a
Exportation Module

Main Author:
C. Sacerdoti Coen

Project Acronym: MOWGLI
Project full title: Mathematics On the Web: Get it by Logic and Interfaces
Proposal/Contract no.: IST-2001-33562 MOWGLI



MoWGLI, IST-2001-33562

Contents

1 Overview

2 MOWGLI Exportation Module Usage
3 Objectives and Design Guidelines

4 The Information Exported
4.1 Metavariables and Existential Variables . . . . ... ... ... ... ......
4.2 Sections, Variables and Discharging . . . . . . . ... ... ... ... ...

5 Design and Implementation
A The CIC DTD
B The Inner-Types DTD

C The Proof-Trees DTD

16

21

26

27



MoWGLI, IST-2001-33562 3

1 Overview

This document describes the first public version of the MOWGLI Exportation Module for
the Coq system. The Exportation Module is a Coq standard contribution which adds new
commands to export to XML theorems and definitions. The Makefile of Coq and the utility
cog-makefile are also modified to easily allow to export in a batch process the whole standard
library of Coq and all the future new theories. The XML output is valid with respect to
tentative DTDs we provide; they are also included as appendix to this document.

The MOWGLI Exportation Module subsumes the functionalities of the previous HELM
Exportation Module, now included in the official distribution of Coq, version 7.3. The Coq
team decided to include it in the next releases of Coq.

The next section describes the module from the user point of view. Then we present the
objectives and the main guidelines we followed. The third section is an exact description of the
information exported. Finally, in section 5 we sketch the design of the Exportation Module.

2 MOWGLI Exportation Module Usage

The MOWGLI Exportation Module is a standard contribution of the Coq system. Thus
the new commands it provides are already available to the Coq toplevel, without having to
Require anything. They are

Show XML File "filename" Proof.
Print XML File "filename" qualified_name.

and their variants

Show XML Proof.
Print XML qualified_name.

Show XML Proof and Print XML can be used anywhere Show Proof and Print are allowed.
In particular Show XML Proof is used to export to XML an incomplete proof and all its related
information. Print XML is used to export any constant or inductive definition block.

Note: exporting a theorem using Show XML Proof just before closing it using Qed or Save
provides more information than exporting it using Print XML once it is closed. Thus, the first
way 18 recommended.

WARNING: Print XML exports objects in their current, possibly partially discharged,
form. In order for the exported XML library to be coherent, Print XML must be applied only
to undischarged objects; in other words objects must be exported before closing the section they
are defined in.

If a filename is not provided, all the generated XML files are output one after another
on the console. Otherwise the provided filename is used as a basename to generate (using
different extensions) the names of all the files, which are all put in the same directory.



MoWGLI, IST-2001-33562 4

The above commands are useful to create XML files to inspect during the interactive
development of a theory. To export whole theories, a different machinery is provided: the
commands coqc and coqtop now have a new flag “-xml”. When the flag is set, theorems
and definitions are automatically exported to XML as soon as they are defined. The output
goes to the console if the COQ_XML_LIBRARY _ROOT environment variable is unset. Otherwise
a whole hierarchy of files and directories are written to the disk; the hierarchy is rooted in
COQ_XML_LIBRARY_ROOT. For each exported object several files are generated, all in the same
directory. The directory chosen reflects the qualified name of the object.

To automatically activate the “-xml” flag for the compilation of both the Coq sources and
user-provided theories, the COQ_XML environment variable must be set to -xml. To achieve
this effect, we modified both the Coq Makefile and the utility coq_makefile. Thus, before
exporting an old theory to XML for the first time, coq_-makefile must be run again.

WARNING: The new Exportation Module is not backward compatible to the old HELM
module. All the others previously available commands are removed. The exported information
1s different and all the DTDs have been changed.

3 Objectives and Design (Guidelines

The main aim of the Exportation Module is to provide Coq users a way to contribute their
developments to the distributed library of documents that will be managed in MOWGLI.
The information exported must be detailed enough to allow all the planned functionalities. In
particular, the output must contain enough logic relevant information to allow independent
proof-checking; it must contain enough additional logic redundant information to make it
possible to develop stylesheets to map the information to a content encoding first and to
a human readable presentation encoding later on; it must form a fine-grained hypertext of
mathematical results, that can be assembled together to form new mathematical documents;
it must record the commands issued to the system to achieve robustness in spite of changes
in the underlying theory!.

The first design challenge was to select exactly what information must be exported and how
1t must be organized both in the DTDs and on the file system. To make our decision, we have
followed a set of guidelines that were maturated in our previous experience with the HELM
exportation module for Coq. In that prototype, developed in the far 1999, we exported only a
much smaller subset of the relevant information we are interested in now. Moreover, trying to
develop prototypes of other tools on top of the exported information, we realized that we made
several mistakes in the development of the DTD. This and some other exporting experiences?
greatly helped us in identifying some guidelines. In the rest of the section we present those
guidelines. Section 4 is devoted to a short description of the information actually exported.

'If some definition a theorem is relying on change, the user must be able to easily redo the theorem, reusing
as much as he can of the original proof. For Coq, this amounts to change some of the given commands.

2The group of Bologna also wrote an exportation module prototype for the NuPRL library. The group of
Saarbrucken exported the libraries of many theorem-provers and some proof-assistant to the OMDoOC format.



MoWGLI, IST-2001-33562 5

Guidelines for the Development of Exportation Modules and Related DTDs

Catalogue the information according to its use.
When the information is required for more than one task, factorize.

Before writing the DTDs, catalogue all the information that is available inside the system and
all the information you are interested in (which may or may not be already available). Since
different tools may require different subsets of the whole knowledge and since we are likely to
change the DTDs and the documents often, insulating the tools from changes in other parts
of the library is almost mandatory. It is not unusual to find out later that the grain was not
fine enough. Example: not every operation that is applied to a theorem requires both the
statement and the proof. Finding out which lemma can be applied, for instance, just requires
the statement or, even better, the list of its hypotheses and the conclusion.

Sometimes some data is required to perform more than one task. In that case it is better
to factorize, even if the factorized information does not seem at once to have any special
meaning.

It is often the case that the information required is logical redundant or, more generally,
implicit in the system. A typical example is missing linking information, for example between
the occurrence of a variable and its definition. Since extracting the implicit information inside
the system is easy, but it may be very difficult, time consuming or hardly possible to do with
an external tool, our second guideline is to

’Make implicit information explicit.

Once the information classes have been identified, it is time to start developing a syntax
(a DTD in the case of XML) for them. At this stage it is also important to understand what
are the relations between the data belonging to the different classes. Those relations must be
made explicit. Thus the third guideline is

Develop one DTD for each class we are interested in.
Make the links between different instances explicit in the DTD.
Locate the atomic components.

Our initial expectation was to be able to heavily link at a very fine grained level the
information collected in the documents belonging to the different classes. For example, it is
reasonable to link:

e cvery type of a sub-term of a proof (inner-type) to that sub-term;

e every node of the proof-tree (that corresponds to a user or system issued tactic) to the
sub-term it generated.

Still it is often the case that there is no real correspondence between those notions inside the
system. For example it may happen that a tactic generates a term that is not present in the
final proof, because a subsequent tactic modified or discarded it. Another possibility is that
the whole proof can be generated using dirty tactics that create detours or lot of redexes that
are later simplified during a clean-up stage. We consider this behaviour of the system to be
a debatable design decision, since it introduces a gap between the proof that the user wants
to describe and the proof that is produced at the end. This may be especially annoying when
the user is really interested in the generated proof-object and he is not given any effective tool
to inspect it.



MoWGLI, IST-2001-33562 6

In these cases, instead of simply avoiding to provide that linking information, it is better
to pinpoint to the developers of the system the problematic operations to be modified. In
the worst case it may be necessary to create a branch in the system development to obtain a
slightly modified tool that is used to produce the library that will be eventually exported.

The atomic components that must be located belong to the same information classes and
represent the minimal referentiable units that have a precise meaning when considered as
stand-alone documents®. Sometimes this notion is quite fuzzy. For example, what are the
atomic components of a block of mutually defined functions? We may choose that the only
atomic component is the whole block, and the functions are simply subparts that may be
referenced starting from the whole block (using XPaths, in the case of XML). Or we may
consider each function to be atomic and make it refers to the other mutual defined functions
via links. Note that some operations (rendering, proof-checking) require the whole block,
while others (extraction of metadata used to answer queries) operate on one function at a
time. Note also that, usually, the whole block is a tiny object.

The need to clearly identify the atomic components is related to our next guideline:

Do not mix information about several components or belonging to sev-
eral classes: one file for each class and for each component.

Assembling together information from different classes is perhaps the worst pitfall, for
several reasons:

e The set of operations we want to perform on the data is not a fixed one. For example,
we can implement several indexing tools to be able to answer to different queries. Since
every tool requires and produces new information that should be put into the library, it
is fundamental to be able to define new file formats (DTDs) and change existent ones.
If several information classes are assembled together, this means that we will have to
modify all the already developed tools to handle (usually to ignore!) the new or modified
syntax. Moreover we will have to regenerate huge amounts of files distributed over the
network (we are supposed to work with distributed libraries of formal mathematical
knowledge).

e The amount of information we want to handle is large. For example the information we
export from the Coq library, once saved as compressed XML files, require more than
1Gb. It is not unusual to have single theorems that, exported in XML and compressed,
require 24Kb. The biggest proof tree alone is an XML file that, uncompressed, requires
about 1Gb. Thus parsing (or even lexically analyze) these files is an expensive operation.
Of course we want to avoid as much as possible to waste time in parsing parts of a file
we are not interested in.

e It is reasonable, at least for some applications, to use a data-base to hold the exported
information. In that case the XML representation is used just as an exchange format
and mixing several data in the same file is not a problem, since the information will be
disgregated inside the data base. This approach, though, limits a priori the possibility
of implementing other tools that, instead of connecting themselves to the database, will
just work on the original files. Moreover, the database approach is surely heavier from

30f course the documents may have links to other documents that must be considered when determining
their meaning. What is important here is that if some kind of context is request, it must be explicitly stated
by means of explicit links.



MoWGLI, IST-2001-33562 7

the point of view of Web-publishing, where the most successful model is that of Web
pages publishing, which is simpler and less demanding.

So far we have exposed the guidelines we followed on how to decide which classes of
information should be exported and how files should be organized. We will now go back to
the problem of designing the DTD and focus on the main difficulties that must be faced.

The main aim is to assure that information exported is complete, general enough and
unbiased, in the sense that it must not force some design choices that we would better avoid.
The risk is to later find out to be unable to develop the expected tools.

Describe, as much as possible, the theory and not the implementation.
Do not be afraid of mapping concepts from the implementation back to
the theory.

Make the theory explicit.

Introduce new theories to justify the implementation.

There may be a big gap between the theory a system is based on and the way it is imple-
mented. Proof-assistants are implemented starting from a well-known theory (e.g. Martin-Lof
Constructive Type Theory for NuPRL; the Calculus of Constructions for Coq). Later on, ex-
tensions to the theory are implemented and possibly proved to be correct. For example, both
in the case of NuPRL and HOL, logic constructions that are derived in the original theory
are made primitive in the implementation for efficiency reasons. In NuPRL this is done, for
example, for the integer numbers and the usual arithmetic operations on them.

What usually happens is that after some years it is difficult to reconstruct a unified theory
of all the extensions provided, while many other changes are completely undocumented. This
happens not only in the kernel of the systems, which is responsible of checking that infer-
ence steps are well-applied, but also in external layers that rely on techniques (e.g. higher
order unification) that are well-known in the literature and that requires extensions to the
representation of the proofs (e.g. metavariables that are typed holes in a proof-term).

When exporting from Coq in our 1999 prototype, the HELM group decided to be quite
close to the implementation, even if some parts of what it exported were partially not un-
derstood. Later on the HELM team developed a prototype proof-checker first and a proof-
assistant later, and realized that it had no clear foundation for the theory it was implementing.
Moreover, having represented not the terms of the theory but their encoding in the structures
of Coq, the implementation of many operations were forcedly isomorphic to what was done in
Coq, even if this prevents experimenting with other solutions. Sections 4.1 and 4.2 give two
examples of situations where in MOWGLI we decided to export information according to a
new formulation of the underlying theory.

Another severe problem that must be faced when exporting the information is that a
proof-assistant may be implemented in an imperative way, where there is a strong notion of
time and the objects of the library change from time to time. This behaviour seems utterly
incompatible with the notion of mathematical library:

A library, due to its nature, is a random access structure, both in space
and time. Try to minimize the dependencies, give them the right di-
rection, beware of “imperative” commands of the system that change
already defined things. Make them immutable.

How can we face the situation in which we have to export some imperative information?



MoWGLI, IST-2001-33562 8

For example, Coq has many other examples of such kind of information:

o A list of theorems that are considered while automatically searching a proof. Theorems
can be added and removed from this list at pleasure.

e Implicit variables. Even if the system automatically chooses the variables it thinks it
may infer, the user can force at any time the set of implicit variables for an object.
Subsequent commands will use the new set.

e Opacity. It can be changed from transparent to opaque, to simulate abstract data types.
e Parsing and pretty-printing rules.

The situation can be described in two ways. The first one is to add the imperative com-
mand that changes the system status to the library, adding links from the command to all the
other objects that are affected. The second way is to say that every command or definition
of the system has an implicit dependency on the state of Coq. This dependency can be effec-
tively make explicit. While the first solutions is easier to implement, because that information
is already available in the system, interpreting a command means in practice re-running all
the commands in a clone of the Coq system to build the status requested. The second solu-
tion, instead, allows to avoid rebuilding the status. Remember that, in a distributed setting,
collecting all the given commands and definitions just to update them because of imperative
commands is already an unaffordable operation. Managing a distributed status may be even
worse. The price to pay, of course, is that objects that change are replicated again and again
for each status they may have. Our experience shows that either the requested status infor-
mation is minimal or there is some problem in the formulation of the theory that should be
better removed, as in the case of discharging.

Conclusions

To conclude, even if many of the above suggestions may appear obvious, the temptation of
sticking to the internals of the system when exporting the information is great. The experiences
with the previous HELM exportation module suggest that the design phase of the DTDs
requires a lot of time and a lot of though; but the result is worth the time spent, since wrong
decisions will greatly slow-down further developments.

In the next months we will validate our work trying to build tools that work on our
exported information. The feedback we will get allows us to better understand the strength
and weakness of the exported information. It is possible that we will need to redesign parts
of the DTDs or to export other information. Moreover, the Coq system is ever-evolving. The
Coq team is already changing again the base theory of the system, introducing, for example,
a notion of modules. As a consequence, a constant work is required to keep the exportation
module updated and to export the new information. Success is granted by the fact that the
module is already developed in the INRIA CVS and maintained by the Coq team, which is a
member of MOWGLI.

4 The Information Exported

We have identified the following classes of information in the library of the Coq system:



MoWGLI, IST-2001-33562 9

e Definitions, inductive definitions and proof-objects as sets of lambda-terms, according
to the Curry-Howard isomorphism and the theory of CIC. Even for definitions, this is
not what the user entered to the system, but the result of complex post-processing,
typing and refining rules implemented in Coq. This is what is actually proof-checked, by
type-checking the lambda-terms and testing the convertibility of their inferred type (in
case of a proof, what the theorem really proves) with the expected type (the statement
of the theorem). Theorems are further refined (see below).

e Statements of the theorems. They are useful not only for proof-checking. First of all
the user can be interested just in the statement of a theorem, that can be parsed and
rendered independently of its proof. Secondly they are the only information required to
answer several kind of logic-dependent queries:

1. which lemma can be applied in this situation?
2. which theorem concludes an instance or a generalization of something?

3. what can we conclude from a certain set of hypotheses?

Note that the previous queries are essentially based on the notion of unification, which
is an expensive operation when performed on very large sets of candidates (that must
also be parsed and loaded into memory to apply unification).

Statements of the theorems can be further divided into hypotheses and conclusion. This
is not a trivial task, since this information is encoded in a lambda-term and because
the constructors of the logical framework (II-abstractions) are overloaded in Coq to
mean either a dependent product, a non dependent product (function space), a logical
implication or a universal quantification. Other logical frameworks as the one of NuPRL,
instead, can have several primitive or derived constructors for introducing hypotheses.
Thus, to implement the logic independent queries in a general way, the separation must
be performed in advance (either statically or dynamically, when needed).

e Logic independent information extracted from a statement. For example, the single
notion of occurrence of a definition in a statement is useful to answer interesting queries:

— which theorem states some property of an operator?

— which theorem may be applied in a certain situation? Note that if we want to
prove some fact about the multiplication of two real numbers, we are interested only
on those statements where that multiplication occurs and no other uninteresting
definition (let’s say the “append” function of two lists) occurs. So we can effectively
use this information to quickly filter out those theorems whose application will
never succeed. Note that this filtering operation is logic independent (then it can be
provided once and for all for every system), it is easily implemented using a standard
relational or XML-based data-base and can be extremely more efficient than trying
one at a time the applications, which usually involve higher-order unification of two
expressions.

e Proofs. Their size is usually orders of magnitude bigger than the size of their statements.
They are never rendered alone, but are an interesting part of the library for data-
mining (for example to recognize similar proofs or to understand the complexity of some
proofs). Usual operations involving proofs alone are their improvement, where a group



MoWGLI, IST-2001-33562 10

of inference steps, possibly automatically found by the system, may be replaced with a
shorter proof, usually human provided.

e Logic independent information extracted from a proof. As for the case of statements,
the most interesting notion is that of occurrence. Given the list of occurrences it is easy
to answer the following queries:

— which proofs depend, directly or indirectly, on a given lemma or axiom?
— which axioms does a proof depend on, either directly or indirectly?
— which part of the library will be affected if some definition or axiom is changed?

— what should I learn to be able to understand the following theorem?

e System dependent information related to a proof or definition. For example, in Coq and
other systems there exists a notion of implicit arguments, which are those arguments
that can be automatically inferred by the system if they are not provided. For example,
when writing x = 7 it is clear that the monomorfic equality of type VI.T' — T — Prop
is applied to the set of real numbers. This information is not necessary to proof-check
a document, but may be useful to render it: information that can be inferred by a
system can often be inferred by the human being and is usually omitted in an informal
presentation. Finally, note that implicit arguments are really system dependent, since
a more powerful system may be able to infer more information and thus consider more
arguments to be implicit.

e Redundant information related to a proof or definition. A typical example is the opacity
of a constant. Opaque constants are abstract data types, whose exact definition can not
be inspected. Proofs in proof-irrelevant systems are always opaque. In those systems that
are not proof-irrelevant, such as Coq, all the constants may be considered transparent
for the sake of proof-checking. This means that all constants may be expanded during
proof-checking. Often, though, it is not necessary to expand every constant for proof-
checking and knowing in advance which constants may not be expanded can make the
system much more performant. This information is essentially logical redundant, since
there is an easy algorithm to make it explicit: try type-checking without any expansion
and, in case of failure, backtrack and expand. Of course the computational complexity
of this algorithm is, in the worst case, exponential in the number of constants that occur
in the theorem being typed.

Another even more interesting example of redundant information is the types of the
sub-expressions of one proof, that corresponds to the conclusions of the subproofs. This
information is completely logical redundant (if type-inference is decidable), but it is
essential to render the term in a pseudo-natural language.

e Metadata related to definitions and theorems. These are other logic independent infor-
mation such as author name or the version of the system the proof was developed in
that can be useful to implement other kind of queries. Metadata can range from simple
to very complex ones, as those needed in educational systems. In Coq, though, they are
not provided inside the system or they are just given as unstructured comments. So we
are not able to export this information.



MoOWGLI, IST-2001-33562 11

A system dependent history of the operations that lead to the creation of a definition
or theorem. In the case of Coq, we can export the proof-tree, which is the internal
structured representation of the list of tactics (and their arguments) used to prove one
theorem. This information may be useful both for rendering purposes and to replay the
proof inside the system, in case we need to modify it.

e Comments. Comments provided by the users are an extremely valuable form of docu-
mentation. The problem is that they are discharged during the lexical analysis of the
input to the system and so they are unavailable inside the system itself. Thus we can
not export them right now.

e Parsing and pretty-printing rules. Coq performs pretty-printing to ASCII notation,
while we are interested in more advanced visual rendering. Thus we do not have any
use for this information, that will not be exported.

e Tactics and decision procedures. It would be extremely interesting to put the code of
tactics and decision procedures into the library. In this way it would become possible
to replay the construction of a proof independently from the system that generated
it and from its version. Indeed a problem we face is that every time some detail of
the implementation of Coq changes, the same script produces a new slightly different
proof. This represents a problem from the point of view of proof-engineers, that must
continuously update the proofs every time a definition changes.

The problem is that, to export tactics to the library, we would need first to formalize a
language (and the libraries) to implement them. This is definitely outside the scope of
MoWGLI.

Before describing the files we actually export for each object of the Coq system, we now
describe two problems we faced. The solution to both of them consisted in exporting logic
information from Coq after reformulating it in a variant of the theory of Coq. All the residual
information is basically exported as it is found in Coq internals.

4.1 Metavariables and Existential Variables

According to the Curry-Howard isomorphism, a correct proof can be seen as a well-typed
lambda-term in some lambda-calculus. Thus an incomplete, partially correct proof must be a
well-typed lambda-term with holes therein. To extend the notion of well-typing to terms with
holes, an hole (called metavariable in the literature) can not simply be a missing term, but
must be associated to a sequent. So a metavariable has a given type and a typed context.

The two main operations on metavariables are instantiation and restriction. A metavari-
able can only be instantiated with a term that is closed w.r.t. the metavariable context and
that has the expected type in that context. Instantiating a metavariable is an heavy opera-
tion, since it requires a linear visit of the whole proof-term. The other operation, restriction,
deletes some hypotheses from the metavariable context. It is required, for example, to perform
unification: to unify two metavariables the first step is to restrict both of them so that their
contexts become equal (possibly up to a decidable convertibility relation).

How can those operations be implemented efficiently? One possibility is to implement re-
striction using instantiation: every time a metavariable should be restricted, a new metavari-
able of the right shape is generated and used to instantiate the old one. Since restriction



MoOWGLI, IST-2001-33562 12

occurs quite often, this implies that an efficient way to perform instantiation must be de-
signed. This is the approach of Coq: restriction is reduced to instantiation and instantiation
is not performed explicitly, but delayed using a new environment that maps every instantiated
metavariable to the term used to instantiate it.

A completely different approach implements restriction explicitly, making each hypothesis
in the sequent optional, so that it is possible to remove one hypothesis keeping trace of the
fact that it was removed?. Nothing is done to speed up instantiation, that becomes a seldom
required operation.

The two possibilities requires different data-structures and representation of metavariables.
Moreover, for technical reasons, in Coq there is a further distinction between full-fledged
metavariables (called existential variables and use to represent holes in the type of other
metavariables) and restricted metavariables that are used to represent just the open goals.

The old HELM Exportation Module did not change the Coq representation. The HELM
team, when implementing its own proof-assistant, found out that that choice forced the treat-
ment of metavariables of Coq. Moreover the distinction between the two kinds of metavariables
did not allow any progress in the proof’. So the HELM developers defined a different inter-
nal representation of metavariables, following the second solution above, and they decided to
propose their own new DTD.

Thus, which is the right format for describing metavariables in the MOWGLI library? The
only reasonable choice is to stick to the theory, where hypotheses in a metavariable context
are not optional and there is no environment to delay instantiation. It is a responsibility of
the systems to map back and forth between this standard and well-understood format and
their internal encoding.

4.2 Sections, Variables and Discharging

In the syntax of Coq it is possible to abstract a group of definitions and theorems with respect
to some assumptions. Example (in Coq syntax):

Section S.
Variable A : Prop.
Variable B : Prop.
Definition H1 : Prop := A /\ B.
Theorem T1 : H1 -> A.
Proof.
<some proof>
Qed.
End S.
(* Here the type of H1l and Tl are different. See code fragment below *)
Theorem T2 : True /\ True -> True.
Proof.
Exact (T1 True False (I,I)).
Qed.

The previous fragment should be equivalent, from a logic point of view, to the following
input:

4This information is required for managing explicit substitutions that are needed to allow reduction of terms
with metavariables.

SThis is not a problem in Coq since the proof-tree with holes is generated on-demand only for pretty-printing
and exporting purposes. Proof-trees are instead used to describe an incomplete proof and the progress on it.



MoWGLI, IST-2001-33562 13

Definition H1 : Prop -> Prop -> Prop := [A:Prop ; B:ProplA/\B.
Theorem T1 : (A:Prop ; B:Prop) (H1 A B) -> A.
Proof.
<some slightly different proof>
Qed.
Theorem T2 : True /\ True -> True.
Proof.
Exact (T1 True False (I,I)).
Qed.

The operation that transforms the first code fragment in the second one is called discharg-
ing. Discharging is implemented in an external layer of the Coq system, in such a way that
the kernel of the system is given the discharged term (and the theory of the kernel of Coq
does not need to be modified).

Since, for rendering purposes, we are more interested in the first fragment, we exported
the undischarged form of the theorems and definitions. The problem with that representation
is that the theorem T1 that is used in theorem T2 is no more equal to the one defined above:
its type is different! This implies two kind of problems in developing tools:

1. While rendering T2, we would like to make the occurrence of T1 an hyperlink to its
definition. What we get is misleading for the reader: the theorem T1 is shown to have
a type that is not the same of its occurrence in T2.

2. To proof-check T2 we need the type of the discharged form of T1. So we are obliged to
discharge T1 and this leads to serious problems: either we save the discharged form, as
Coq does, and this goes against our initial choice; or we discharge the theorem on-the-fly
when needed, and, being this an expensive procedure, we have to implement complex

caching machineries®.

The solution we are adopting now is simply to redesign the theory, replacing the notion
of discharging with that of explicit named substitution. So, while exporting, we completely
change the definition of T2 to the following one:

Theorem T2 : True /\ True -> True.

Proof.
Exact (T1[A := True ; B := False] (I,I)).
Qed.

In this way we are no more exporting the exact definition of T2 inside Coq, but something
more well-behaved for our purposes and that can be mapped back, if needed, to the Coq
representation. Both of the previous problems are solved with this representation, since T1
can be rendered as it is just adding the explicit substitution to the top and T2 can be type-
checked without discharging T1, by taking care of the explicit substitution in the typing rules
of the system.

The Exported Files

So fare we implemented only the exportation of part of the previously identified information.
We will export the missing data as soon as DTDs are proposed in other working packages.
The files we export for each object class are now described.

5This is what HELM implemented, but the nature of the discharging operation interfered with the usual
locality reference principle of caches. As a result we got very poor and unexpected performances.



MoOWGLI, IST-2001-33562 14

Constants (i.e. definitions, theorems and axioms):

e A compressed XML file constant_name.con.xml.gz holding the type of the constant
(which is the thesis if the constant is a theorem). Its DOCTYPE is ConstantType, defined
in the CIC DTD (see A).

e If the constant is a definition or a finished theorem, we export another compressed XML
file constant_-name.con.body.xml.gz holding:

1. the body of the constant (which is the proof if the constant is a theorem)
2. the list of section variables the constant depends on (as the attribute params)

3. an explicit reference (URI) to its type file (as the attribute for)
Its DOCTYPE is ConstantBody, defined in the CIC DTD (see A).

e If the constant is an unfinished proof, we export another compressed XML file con-
stant_name . con.body.xml.gz holding:

1. the partial proof of the theorem, which contains metavariables

2. a list of conjectures, which are essentially the sequents associated to metavariables.
The conjecture context is not a named context (as in Coq internals); De Brujin
indexes are used instead of named references.

3. an explicit reference (URI) to its type file (as the attribute of)
Its DOCTYPE is CurrentProof, defined in the CIC DTD (see A).

e A compressed XML file constant_name.con.types.xml.gz holding, for each subterm of
sort Prop of the constant, the inferred type for that subterm and, in case it is different, its
expected type. Inferred and expected types are computed using the algorithm proposed
by Yann Coscoy in his PhD. thesis. Its DOCTYPE is InnerTypes, defined in the Inner-
Types DTD (see B).

e If the constant is a theorem that was exported using the Show XML Proof command, we
also export another compressed XML file constant_name.con.proof_tree holding the
proof-tree that generated the proof. Its DOCTYPE is ProofTree, defined in the Proof-Trees
DTD (see C).

Section Variables (i.e. instantiable hypothesis and lemmas):

e A compressed XML file variable_name .var .xml. gz holding both the type of the constant
and its body (if present). Only variables without body may be later instantiated applying
explicit named substitutions to the occurrences of constants that depends on them. The
DOCTYPE of the file is Variable, defined in the CIC DTD (see A).

e A compressed XML file variable_name .var.types.xml.gz holding, for each subterm of
sort Prop of the variable, the inferred type for that subterm and, in case it is different, its
expected type. Inferred and expected types are computed using the algorithm proposed
by Yann Coscoy in his PhD. thesis. Its DOCTYPE is InnerTypes, defined in the Inner-
Types DTD (see B).



MoWGLI, IST-2001-33562 15

e If the variable is a theorem that was exported using the Show XML Proof command, we
also export another compressed XML file variable_name .var.proof _tree holding the
proof-tree that generated the proof. Its DOCTYPE is ProofTree, defined in the Proof-Trees
DTD (see C).

Mutual Inductive Types Block:

e A compressed XML file first_type_name.ind.xml.gz holding the whole block of mutual
inductive types declarations. The declarations of every constructor of each type are also
included. The types occurs in the types of the constructors as free De Brujin indexes;
the lower free index is the last type. This reflects Coq encoding. The DOCTYPE of the
file is InductiveDefinition, defined in the CIC DTD (see A).

e A compressed XML file first_type_name.ind.types.xml.gz holding, for each subterm
of sort Prop, the inferred type for that subterm and, in case it is different, its expected
type. Inferred and expected types are computed using the algorithm proposed by Yann
Coscoy in his PhD. thesis. Its DOCTYPE is InnerTypes, defined in the Inner-Types DTD
(see B).

The CIC DTD defines roughly three classes of elements:

e Objects elements: there is one root element for each one of the DOCTYPEs described
above. Every element has all the attributes already described; moreover it has an id
attribute of type ID, which can be used to attach information to it”.

e Term elements: we have roughly an element for each constructor of CIC, plus the
instantiate parameter introduced for explicit named substitutions. The content and
attributes of the elements should be clear to people acquainted to the theory of CIC.

e Syntactic sugar: we introduced lots of syntactic sugar elements to make the files clear
to theory experts without having to look at the DTD. Some attributes have been moved
from term elements to syntactic sugar elements when this improved readability.

The Inner-Types DTD is trivial.
Proof-Trees are sequent representations of the proof. The classical sequent-calculus style
proof-tree is a tree whose nodes are made of:

e A sequent to prove, made of a goal and a list of hypotheses.
e The rule used to prove the sequent. Every rule is a primitive rule of the logical framework.
e One subproof for each premise of the rule.

In Coq the notion of rule is replace by that of tactic. A tactic can be either primitive (if
it corresponds to a primitive rule of the logical framework) or defined. If it is defined, it
must be considered as a sort of macro that, once applied, generates a new proof-tree (made

"XPath in theory provides a formalism rich enough to identify every element in an XML file without having
to use unique identifiers. Nevertheless, our XML files are peculiar, since they are huge and extremely vertical;
it is not unusual to have several hundreds depth levels. The length of XPaths to identify a deep node is O(n),
where n is its depth. Moreover, every node of the tree can be referenced in our files (for example to add inner
types). So the choice of introducing ids for every node is much more convenient.



MoWGLI, IST-2001-33562 16

of both primitive and defined tactics). When every defined tactic is expanded, the result
is necessarily a tree of primitive tactics. Thus progressive defined tactic explosion naturally
allows structured browsing of the proof-tree.

The DTD is conceived to preserve the distinction between primitive tactics (Prim) and
defined tactics (Tactic). For every defined tactic, its expansion in terms of other tactics is
also stored. Thus we have the following elements:

Prim Primitive tactics have a list of subtrees that provide the proof for every premise of the
tactic. The sequent to prove is omitted.

Tactic Defined tactics have children elements to describe the sequent they prove. The sequent
is made of a Goal and a list of Hypothesis. They also have a subproof that corresponds
to their expansion. The script attribute stores the exact user-provided text used to
invoke the tactic®.

Both elements also have an of attribute that is the identifier of the node of the lambda-term
that was generated by the tactic. Interesting applications are made possible by this attribute.
For example, it often happens that a tactic produces a huge sub-term in the proof-object. Once
the undesired sub-term is identified, it can be replaced with a smaller one simply identifying
the tactic that produced it and providing a new proof-tree to replace the tree rooted in that
tactic.

Finally, the ProofTree element has an of attribute that is the URI of the proof-object
produced by the proof-tree.

5 Design and Implementation

Since the code of Coq is evolving daily, the help of the Coq developers in maintaining and
updating the exportation module is fundamental. As a consequence we decided to develop
the Exportation Module using the Coq CVS system. The whole development is performed on
a CVS branch?, so that the Coq team is free to decide if the module will be part of the next
standard distributions of the system.

The exportation process comprises three phases:

1. Information retrieval. The relevant information must be extracted from Coq data
structures. The new toplevel commands and the “-xml 7 flag must be added to start
the exportation process.

2. Transformations and new information synthesis. The retrieved information must
be mapped to a new format that reflects our DTD. For example, some applications must
be converted to explicit named substitutions. New information must be synthesised.
For example, Coscoy’s double type inference algorithm must be recursively applied to
compute the inner-types.

3. XML generation. The collected information must be output to XML.

8This attribute is useful for pretty-printing since Coq’s input language allows syntactic variations to invoke
a tactic. We would like to keep the exact user-provided text as much as possible
9The name of the branch is mowgli.



MoWGLI, IST-2001-33562 17

The main issue faced was to insulate the module as much as possible from Coq changes.
Coq data structures are likely to change often. On the contrary, our DTD, that reflects the
theory only, will be much more stable. Thus an important issue is to define two intermediate
information representations. The first one must just be a collection of all the relevant informa-
tion, using Coq data structures. It is basically the output of the information retrieval phase.
The second one is a representation of the same information that is basically isomorphic to the
DTD. Note that, at this level, all the links between the different data must have been made
explicit.

As a consequence, the code is naturally factorized into three clusters of functions. The first
one are those functions that performs the retrieval phase. These functions rely on a big subset
of Coq functions defined outside the kernel (and whose interface is thus quite unstable). The
second cluster is made of those functions that transform, assemble and link the data together.
They constitute the largest part of the new code and they mainly rely on Coq re-typing
functions (which are still defined outside the kernel, but whose interfaces essentially stable,
unless the theory is extended). Finally, for the XML generation phase, we have developed a
minimal programmer-friendly XML library to describe and output XML structures.

The second main issue was how to associate data to subterms. In fact, in order to im-
prove memory usage and performance, terms are shared in Coq as much as possible. Sharing
prevents the possibility to associate data to shared instances in different contexts, unless the
whole context is remembered. Adding the context information to terms would imply changing
the term structure, since any other way of associating context to subterms just gives back
the original problem. Changing the term structure prevents the usage of all the functions
developed in Coq and thus it is utterly unfeasible. Thus the only possibility left is to de-
stroy sharing during the retrieval phase. Since most of Coq types, includes that of terms, are
abstract data types and since Coq abstract constructors ensure sharing, we were forced to
modify the Coq kernel to implement an unsharing function.

The implementation of the unsharing function, used every time a term is retrieved from the
system data structures, did not solve completely the problem. In particular, we are interested
in exporting both the proof-tree and the generated proof-object, keeping links between corre-
sponding nodes of the two structures. So we were unable to retrieve the two data structures
independently and map them to XML, since there is no way to retrieve the linking infor-
mation. As a consequence we had to reimplement the Coq function that maps proof-trees
to proof-objects, in order to record the linking information. The new implementation must
unshare the subterms as soon as they are recursively produced. The resulting proof-object,
and not the one stored in the Coq library, is the object we have to export!®.

Once the previous two design issues were solved, the whole implementation required ap-
proximately 2 man months and produced about 2600 lines of code, comments excluded. The
time spent reflects the overall effort: understanding the Coq data structures, synthesizing new
information and reimplementing some of the Coq internal functions are a complex job, which
requires a lot of interaction with the Coq developers. The work to print the information to
XML is essentially marginal (and requires just about 700 lines of code).

Overview of the Exportation Module modules

We now briefly sketch the roles of the several implemented modules.

100f course the two objects must be equal, up to sharing and physical equality.



MoWGLI, IST-2001-33562 18

Acic

The Acic module defines the two intermediate data structures for proof-objects; their name
is obj and aobj. The first one is a concrete data type with a constructor for each one of the
DOCTYPESs of our DTD. For the terms argument of the constructor we use Coq term data type.
Metavariables already have the form required by our DTD, while explicit named substitutions
are introduced only in the next structure. Since the type used for terms is the Coq one, unique
identifiers are also missing.

The second structure, aobj, almost reflects the DTD. The only missing data are the sort
attributes of the terms.

Acic2Xml

This module is responsible of pretty-printing aobjs and inner-types to Xml.xml token Stream.

which is a lazy data structure used to represent XML trees. Inner-types must be provided by
means of an hash-table to map subterms to DoubleTypeInference.types structures. Another
hash-table must be provided to map subterms to their sorts.

The only exported functions are print_term, print_object and print_inner_types,
whose semantics is reflected in their names.

Xml

This module provides a data structure to represent XML forests as streams of XML nodes. It
provides constructors to create CDATA and ELEMENT nodes. ELEMENT nodes are given a name,
a list of attributes and the forests of their children. It also provides a pretty-printing function
to print an XML textual output either on a file or on standard output.

Cic2acic

This module is responsible of mapping obj structures to aobj structures, introducing unique
identifiers, computing the inner-sorts (using Coq typing functions), the inner-types (using the
function provided by the module DoubleTypeInference) and mapping applications to explicit
named substitutions where required.

The main exported function is acic_object_of_cic_object.

DoubleTypeInference

This module provides the function double_type_of whose arguments are an unshared Coq
term, its optional expected type and the metasenv, environment and context in which it
is defined. The function computes the inner-types of every subterm of the given term and
returns an hash-table that maps every subterm node to a types structure, which holds both
the synthesized type and the expected type (if different).

Proof2aproof

This module reimplements the extract_open_pftreestate function of Coq that maps proof-
trees to proof-objects. The two main differences w.r.t. the one of Coq are the bookkeeping
of links between the proof-tree nodes and the terms they produce and the production of



MoWGLI, IST-2001-33562 19

existential variables for open goals instead of metavariables. The output is a tuple of several
arguments:

e the produced proof-object, equal to the one provided by Coq up to sharing and physical
equality.

e a new metasenv, which includes not only the existential variables of Coq, but also the
ones generated to replace Coq metavariables.

e an unshared version of the proof-tree given in input. This is the proof-tree that is the
domain of the following two hash-tables.

e an hash-table to map the unshared proof-tree nodes to the corresponding subterms in
the proof-object.

e an hash-table to map the unshared proof-tree nodes to the proof-tree nodes of the
flattened proof-tree. The flattened proof-tree is an expanded version of the proof-tree
where non-primitive tactics are replaced by the proof-tree that proves them using just
primitive tactics. The flattened proof-tree is the proof-tree that is actually exported to
XML.

ProofTree2Xml

This modules provides a function, print_proof_tree, whose arguments are basically those
provided by the Proof2aproof. The function traverses the unshared proof-tree and its flat-
tened version and generates the XML representation for it. Actually, as for the Acic2Xml
module, the output type is Xml.xml token Stream.t.

Xmlcommand

This is the module that, together with Proof2aproof, is responsible of the retrieval phase.
It provides the print and show commands that are invoked using the Print XML and Show
XML Proof syntax. It also provides another function, activate_xml _exportation, which
implements the behaviour of the “-xml” flag.

Basically it works in this way: when one of the printing commands is issued, it retrieves
from Coq internal structures the environment, context, metasenv and proof-object and, if
possible, also the proof-tree. Some other information is also computed at this stage. Then, if
the proof-tree is available, it uses the Proof2aproof module to compute the proof-object to
export; otherwise it uses the one provided by Coq, after unsharing it. This ends the retrieval
phase. The transformation and synthesis phase consists in using the Cic2acic module to
retrieve the aobj and the inner-types. To complete the last phase, it retrieves all the XML
structures by means of Acic2Xml and ProofTree2Xml (if the proof-tree was available) and
outputs them using the Xml.pp pretty-printing function.

Xmlentries

This module extends the Gallina syntax with the new Print XML and Show XML Proof com-
mands, implemented in the Xmlcommand module.

Since the code and the function types are daily evolving!!, for a more detailed description

yntil the current Coq development release freezes



MoWGLI, IST-2001-33562 20

of the interfaces the reader is invited to download the Exportation Module code from Coq
CVS and look directly to the ocaml interface files.

The whole module is now reasonably bug-free and is successfully used to export the whole
standard libraries of Coq and all the available contribs compatible with the current Coq CVS
version. The exportation process requires 3h 35m on a 1.8Gh Pentium IV processor with
512Mb of RAM and produces 1.13Gb of XML compressed files.



MoWGLI

, IST-2001-33562

A The CIC DTD

<?7xml enc

<!-- DTD

<!-- CIC

<!ENTITY

<I-- CIC

<IENTITY

<!-- CIC

<IENTITY

<!-- CIC

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

oding="IS0-8859-1"7>
FOR CIC OBJECTS: -->

term declaration —-->

% term ’ (LAMBDA|CAST|PROD|REL|SORT|APPLY|VAR|META|IMPLICIT|CONST|

21

LETIN|MUTIND |MUTCONSTRUCT | MUTCASE |FIX|COFIX|instantiate)’>

sorts —-—>
% sort ’(Propl|Set|Type)’>
sequents -->

% sequent °’((Decl|Def|Hidden)*,Goal)’>

objects: -->

ConstantType Jterm;>
ConstantType

name CDATA #REQUIRED
id ID #REQUIRED>
ConstantBody Yterm;>
ConstantBody

for CDATA #REQUIRED
params CDATA #REQUIRED
id ID #REQUIRED>
CurrentProof (Conjecturex*,body)>
CurrentProof

of CDATA #REQUIRED
id ID #REQUIRED>
InductiveDefinition (InductiveType+)>
InductiveDefinition

noParams NMTOKEN #REQUIRED
params  CDATA  #REQUIRED

id ID #REQUIRED>
Variable (body?,type)>

Variable

name CDATA #REQUIRED
id ID #REQUIRED>



MoWGLI, IST-2001-33562

<!ELEMENT Sequent %sequent;>
<IATTLIST Sequent
no NMTOKEN #REQUIRED
id 1ID #REQUIRED>

<!-- Elements used in CIC objects, which are not terms: -->

<!ELEMENT
<IATTLIST

InductiveType (arity,Constructorx*)>
InductiveType

name CDATA #REQUIRED
inductive (truelfalse) #REQUIRED>

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

<!-- CIC terms:

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

Conjecture Y%sequent;>
Conjecture

no NMTOKEN #REQUIRED
id ID #REQUIRED>

Constructor %term;>
Constructor
name CDATA #REQUIRED>

Decl %term;>

Decl

name CDATA #IMPLIED
id ID #REQUIRED>

Def %term;>

Def

name CDATA #IMPLIED
id ID #REQUIRED>

Hidden EMPTY>
Hidden
id ID #REQUIRED>

Goal Yterm;>
-—>

LAMBDA (decl*,target)>
LAMBDA
sort %sort; #REQUIRED>

LETIN (defx,target)>
LETIN
id

ID #REQUIRED



MoWGLI,

<!ELEMENT
<IATTLIST

<IELEMENT
<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT

<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

IST-2001-33562

sort %sort; #REQUIRED>

PROD (declx,target)>
PROD
type %sort; #REQUIRED>

CAST (term,type)>
CAST
id ID #REQUIRED

sort %sort; #REQUIRED>

REL EMPTY>

REL

value NMTOKEN #REQUIRED
binder CDATA #REQUIRED
id ID #REQUIRED
idref IDREF #REQUIRED
sort  Ysort; #REQUIRED>

SORT EMPTY>

SORT

value CDATA #REQUIRED
id ID #REQUIRED>
APPLY (Y%term;)+>

APPLY

id ID #REQUIRED

sort %sort; #REQUIRED>

VAR EMPTY>

VAR

relUri CDATA #REQUIRED
id ID #REQUIRED

sort  Y%sort; #REQUIRED>

<!-- The substitutions are ordered by increasing DeBrujin -->
<!-- index. An empty substitution means that that index is -->
<!-- not accessible. -=>
<!ELEMENT META (substitutionx)>
<!ATTLIST META

no NMTOKEN #REQUIRED

id ID #REQUIRED

sort Y%sort; #REQUIRED>
<!ELEMENT IMPLICIT EMPTY>

<IATTLIST

IMPLICIT
id ID #REQUIRED>

23



MoOWGLI, IST-2001-33562 24

<!ELEMENT CONST EMPTY>

<VATTLIST CONST
uri CDATA #REQUIRED
id ID #REQUIRED
sort %sort; #REQUIRED>

<!ELEMENT MUTIND EMPTY>

<IATTLIST MUTIND
uri CDATA  #REQUIRED
noType NMTOKEN #REQUIRED
id ID #REQUIRED>

<!ELEMENT MUTCONSTRUCT EMPTY>
<!ATTLIST MUTCONSTRUCT
uri CDATA #REQUIRED
noType NMTOKEN #REQUIRED
noConstr NMTOKEN #REQUIRED
id ID #REQUIRED
sort %sort; #REQUIRED>

<!ELEMENT MUTCASE (patternsType,inductiveTerm,pattern*)>
<IATTLIST MUTCASE

uriType CDATA  #REQUIRED

noType NMTOKEN #REQUIRED

id ID #REQUIRED

sort Y%sort; #REQUIRED>

<!ELEMENT FIX (FixFunction+)>
<V'ATTLIST FIX
noFun NMTOKEN #REQUIRED
id ID #REQUIRED
sort Y%sort; #REQUIRED>

<!ELEMENT COFIX (CofixFunction+)>
<!'ATTLIST COFIX
noFun NMTOKEN #REQUIRED
id ID #REQUIRED
sort Y%sort; #REQUIRED>

<!-- Elements used in CIC terms: -->

<!ELEMENT FixFunction (type,body)>
<VATTLIST FixFunction
name CDATA  #REQUIRED
recIndex NMTOKEN #REQUIRED>



MoWGLI, IST-2001-33562

<!ELEMENT CofixFunction (type,body)>
<VATTLIST CofixFunction
name CDATA #REQUIRED>

<!ELEMENT substitution ((%term;)?)>
<!-- Explicit named substitutions: -->
<VELEMENT instantiate ((CONST|MUTIND|MUTCONSTRUCT),arg+)>
<!'ATTLIST instantiate
id ID #IMPLIED>
<!-- Sintactic sugar for CIC terms and for CIC objects: -->
<!ELEMENT arg %term;>
<VATTLIST arg

relUri CDATA #REQUIRED>

<!ELEMENT decl Yterm;>
<IATTLIST decl

id ID #REQUIRED
type  %sort; #REQUIRED
binder CDATA #IMPLIED>
<!ELEMENT def %term;>
<!ATTLIST def
id ID #REQUIRED
sort  Ysort; #REQUIRED
binder CDATA #IMPLIED>

<IELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

<!ELEMENT

target Y%term;>

term %term;>
type Yterm;>
arity %term;>

patternsType

Y%term;>

inductiveTerm Y%term;>

pattern Yterm;>

body ‘“term;>

25



MoWGLI, IST-2001-33562

B The Inner-Types DTD

<?7xml encoding="I1S0-8859-1"7>
<!-- DTD FOR INNER TYPES: -->
<VENTITY % cicdtd SYSTEM "cic.dtd">
%cicdtd;
<!ELEMENT InnerTypes (TYPEx)>
<!ATTLIST InnerTypes

of CDATA #REQUIRED>
<!ELEMENT TYPE (synthesized,expected?)>
<'ATTLIST TYPE

of NMTOKEN #REQUIRED>

<!ELEMENT synthesized %term;>

<!ELEMENT expected %term;>

26



MoWGLI,

IST-2001-33562

C The Proof-Trees DTD

<?7xml encoding="I1S0-8859-1"7>

<!-- DTD FOR INNER TYPES: -->

<!ENTITY % cicdtd SYSTEM "cic.dtd">

%cicdtd;

<IENTITY % tactic ’(Prim|Tactic)’>

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT
<IATTLIST

<!ELEMENT

<!ELEMENT
<IATTLIST

ProofTree Y%tactic;>
ProofTree
of CDATA #REQUIRED>

Prim (%tactic;)*>

Prim

name CDATA #REQUIRED

of NMTOKEN #REQUIRED>

Tactic (Goal,Hypothesis*,%tactic;)>
Tactic

name CDATA #REQUIRED

script CDATA #REQUIRED

of NMTOKEN #REQUIRED>

Goal %term;>

Hypothesis %term;>
Hypothesis

name CDATA #REQUIRED
id ID #REQUIRED>

27



	Overview
	MoWGLI Exportation Module Usage
	Objectives and Design Guidelines
	The Information Exported
	Metavariables and Existential Variables
	Sections, Variables and Discharging

	Design and Implementation
	The CIC DTD
	The Inner-Types DTD
	The Proof-Trees DTD

