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1 Introduction

The representation of proofs is one of the central issues in the establishment of standard for
mathematical documents on the Internet. The partners of the MOWGLI project have more
than one representation format for proofs.

The HELM project exports mathematical knowledge from the CoqQ library and CoQ
proofs in the HELM CIC format (see report D2a), an XML representation of terms in the
Calculus of (Co)Inductive Constructions [Wer94], with some support for the CoqQ library struc-
ture. This representation is then transformed in several steps into a MATHML presentation
of the proof terms.

The OMDoc format (an XML-based format for open mathematical documents; for OM-
Doc 1.1 see [KohO1]) defines a general content-based format for marking up proofs. This
format supports content markup for proofs in a sequent-style proofs, mixing informal or natu-
ral language presentation with formal proof specification elements. In contrast to the HELM
approach, which attempts to faithfully capture the CIC calculus in an XML-based format,
OMDoc strives for a general system-independent proof representation format in which spe-
cific proof formats can be embedded, and that is therefore suited to be a communication
standard among systems.

This report comes out of the attempt to translate the HELM CIC format into OMDoOC by
XSLT style sheets. The experiment and the resulting style sheets are covered in the companion
document D2c of this report. These style sheets transform the the low-level XML descrip-
tion of the library of the CoqQ Proof Assistant to the version of OMDOC described in this
report. Currently, the style sheets only cover a part of the ultimate transformation, covered
by the original HELM format. This part consists in adding inner types (as content-MATHML
expressions) to the A-terms exported from CoQ and transforming the proof structure. The
generation of natural language, line-breaking considerations, etc. will be implemented later in
the task T2.5.

This experiment uncovered various deficiencies in the OMDoC format, which we try to
remedy in this report. The main problems we address in this report are that

e OMDoc separates symbol declarations from definitions into two separate elements,
which makes it impossible to represent mutually recursive definitions (without intro-
ducing specialized grouping devices). We will discuss an integrated notion of definitions
in section 2.

e OMDoc proofs do not directly support the notion of proof contexts needed for reasoning
from local hypotheses, e.g. in Gentzen’s Natural Deduction calculus [Gen35]. It is
therefore necessary to use a sequent-style encoding of hypotheses, which is awkward e.g.
for theorem provers that employ the Curry-Howard-DeBruijn isomorphism.

In section 3 we will introduce first-class proof contexts into the proof structures.

The OMDoc 1.1 format is currently being re-released as OMDoc 1.2 with a modularized
document type definition and XML schema. This prepares the way for a backward incompatible
re-design of the modules in OMDoC 2.0. The extended representation format proposed in
this report is intended as a basis for the re-design of the PF and ST modules in OMDoc 2.0.
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2 Definitions and Axioms

In this section we will develop a new model of definitions and axioms in OMDoc.

Generally, mathematical formulas are built up from symbols whose meaning is given some-
where else in the document, or assumed to be known to the recipient. Therefore content-based
representation formats for mathematical knowledge and formulae like MATHML and OPEN-
MATH provide a notion of a symbol. Semantical representation formats like formal logics
go even further by providing a notion of symbol (often called constant there) for all of the
concepts (properties, functions, sets) involved formalizing the mathematical knowledge.

Declaring these symbols and defining or restricting their meaning is one of the foremost
task of mathematical representation formats and knowledge management systems. The devices
used for this are usually called definitions and axioms in mathematics.

Before we come to the proposed OMDOC 2 model of definitions and axioms, let us look
at some examples from informal mathematics and then survey the situation in OMDoc 1.

2.1 Informal Mathematical Data

There are many forms of axiomatic restrictions of meaning in mathematics. Maybe the best-
known are the five Peano Axioms for natural numbers. Axioms are assertions about (sets) of
mathematical objects and concepts that are assumed to be true.

1. 0 is a natural number.

2. The successor s(n) of a natural number n is a natural number
3. 0 is not a successor of any natural number.

4. The successor function is one-one.

5. The set IN of natural numbers contains only elements that can be con-
structed by axioms 1. and 2.

Figure 1: The five Peano Axioms

The Peano axioms in Figure 1 (implicitly) introduce three symbols: 0, the successor func-
tion s, and the set IN of natural numbers. The five axioms jointly constrain their meaning so
that any two structures that interpret 0, s, and IN and satisfy these axioms must be isomor-
phic. Whenever this is the case, (and the axioms do not constrain the meaning of any other
symbols), then a (set of) axioms is called a definition.

Generally, we will call the symbols to be defined the definienda, and the material a symbol
is defined by the definiens.

Definitions can have many forms, they can be

1. equations, where the left hand side is the defined symbol and the left hand side is a term
that does not contain it, as in Figure 2.1. We call such definitions simple.

2. general statements that uniquely determine the meaning of the objects or concepts in
question, as in Figure 2.2. We call such definitions implicit; the Peano axioms are
another example of this category.
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1. 1:=s(0) (1 is the successor of 0)

2. the exponential function e is the solution to the differential equation

Of = f [where f(0) =1].
3. addition on the natural numbers is defined by the following equations:

z+0=2x and z+s(y) =s(x+y)

4. a natural number is called even, if it is the successor of an odd number,
and odd, iff it is the successor of an even number; 0 is an even number.

Figure 2: Some common definitions

Note that this kind of definitions requires a proof of unique existence to ensure well-
definedness. Incidentally, if we leave out the part in square brackets in Figure 2.2,
the differential equation only characterizes the exponential function up to additive real
constants. In this case, the “definition” only restricts the meaning of e to a set of
possible values. In this case, we call such a “definition” loose.

3. sets of equations, as in Figure 2.3, even though this is strictly an implicit definition,
it is a sub-case, where well-definedness can be shown by giving an argument why the
systematic applications of these equations terminates, e.g. by exhibiting an ordering
that makes the left hand sides strictly smaller than the right-hand sides. We call we call
such a definition recursive.

4. sets of mutually recursive statements, where the definiens of a symbol can mention
the others. We call such a definition mutually recursive, since the well-definedness
proof only needs to exhibit an ordering, but the definition can not be separated into
self-contained definitions for the respective symbols involved.

2.2 The State in OMDoc Version 1

OMDoc 1 separates symbol declarations from definitions into two separate elements. For
instance, to define a symbol for the number one from the number zero and the successor
function, we need to declare the symbol in a symbol element and then define its meaning in
a definition element, as in Listing 1.

Listing 1: An OMDoc 1 definition of the number one

<symbol id="one” >
<type system="STS”><OMS cd="setnamel” name="N"/>< /type>
< /symbol>

<definition id="one—def” for="one” type="simple” >

<CMP>1 is the successor of 0</CMP>

<OMOBJ><OMA><OMS cd="nat” name="suc” /></OMS cd="nat” name="zero” /></OMA></OMOBJ>
< /definition>

While this gives great flexibility for encoding informal mathematics — e.g. there may be no
definition for a declared symbol, or more than one (equivalent) definitions, it becomes hard to
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enforce structural properties of symbols like their scope. A related but distinct problem is to
determine which definitions are in the scope when we give a new definition. OMDoC 1 solves
part of these problems by an explicit management of scope by theory elements, but this is
not sufficient, since theories do not nest in OMDoOC 1 and moreover, they cannot be used to
specify scoping inside mathematical objects like proofs.

Finally, it becomes hard to represent mutually recursive definitions (without introducing
specialized grouping devices). Again, OMDOC 1 has a partial solution in the adt element (for
so-called abstract data types), but the experiment of translating HELM proof representations
into OMDoOC has shown that this is not expressive enough.

2.3 Symbol-Declaring Elements

The prototypical symbol-declaring element in OMDOC is the declaration element. It de-
clares a symbol whose meaning can later be clarified or restricted by axioms. It shares a lot
of the the structure with other symbol-declaring elements, therefore we introduce its content
model in this section together with these. In contrast to the elements introduced in sec-
tions 2.4 and 2.5 (we call these definitional, since they unambiguously define the meaning of
the symbols), it does not claim to fix the meaning of the declared symbol up to isomorphism.

Ontologically, OMDoc definitions distinguish types and objects. The former are spe-
cial constructs denoting sets that can be used to describe other objects, and are used like
type construct in modern programming languages. Consequently, OMDOC has two major
definitional elements: definition and sortdef.

The elements definition and sortdef — as well as their children (constructor, selector,
and recognizer) — implicitly declare symbols that can be used elsewhere (see the discussion
above). We call these elements symbol-declaring.

declare and the definitional OMDOC elements declare symbols that can be used else-
where in OMDoC documents. We call these elements symbol-declaring. The declared
symbols are uniquely identified by the name attribute (the name of the symbol) and the id of
the enclosing theory element (the theory of the symbol).

Technically, this information (the theory identifier and the name) is sufficient to allow
referring back to this symbol as an OPENMATH 0MS or a MATHML csymbol element. For
instance the definition declaration in Listing 4 gives rise to a symbol that can be referenced
as

e <0OMS cd="nat" name="one"/> in OPENMATH and as
e <csymbol DefinitionURL="http://base.uri/#byctx(one@nat)"/> in C-MATHML'.

To specify additional information about symbols, symbol-declaring elements can have
groups of commonname and type elements as children.

Multilingual commonname elements are indexed by their xml:lang attribute and specify
keywords: If the document containing the symbol-declaring element was stored in a data base
system, the symbol could be looked up by the strings specified in the commonname children.

The type element groups and specifies type information. As there are many type and sort
disciplines around, the type element carries a system attribute that specifies the name of the
type system. Its value is usually the name of a theory that specifies a logical system or type

!MATHML uses a URI reference for identifying symbols; in this case, we use the OMDoC “byctx” fragment
identifier; for details see [Koh01].
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system. It is not an error to have more than one type declaration per system attribute in
a symbol-declaring element, this just means that the object has more than one type in the
respective type/sort system. The content is a mathematical object of the type system specified
in the system attribute.

Note that the symbol declaration only fixes the identity (and referening) of the declared
symbol so far, but not common notations. Therefore, OMDOC allows to embed presentation
elements that specify notations for symbols into symbol-declaring elements. Since specifiation
of notation is not the focus of this report, we refer the reader to the OMDocC specifica-
tion [KohO1] for details.

To get a feeling for this let us consider the declaration in Listing 2, a very simple formal-
ization of the declaration in Figure 1.. The type elements specify that 0 is a positive number
in the type system “simple-sorts” (whatever that may be) and a natural number in OPEN-
MATH’s small type system [Dav99]. The presentation specifies the default presentation of
the symbol zero, in this case, it is just the digit 0.

Listing 2: A definition of the natural number 1 from 0 and the successor function

<declaration id="zero—dec” name="zero” >
<CMP><OMOBJ><OMS cd="nat” name="zero” /></OMOBJ> is a natural number.</CMP>
<type system="simple—sorts” ><OMOBJ><OMS cd="nat” name="nat” /></OMOBJ>< /type>
<type system="http://mbase.mathweb.org/omstd#sts” >
<OMOBJ><OMS cd="setname” name="N"/></OMOBJ>
< /type>
<presentation><use format="default” >0< /use></presentation>
< /declaration>

Note that the meaning of the symbol 0 is only partially determined by the information we
have so far: we know that 0 is a natural number. In fact, we cannot fully determine the meaning
of 0 in isolation, but we need all of the information given in Figure 1. Therefore, OMDoC
allows to restrict the meaning of symbols by the formulae in axiom elements (see [KohO1] for
details). In the case of the five Peano axioms in Figure 1, we would formalize the second
axiom in declaration like the one in Listing 2 and the other three as axioms.

Note that the type elements in our example are also axiomatic in character, they restrict
the meaning of 0 to be a member of a certain set (IN), and we could have replaced them
by a suitable axiom about 0. Note that in such cases, wher an axiom directly pertains one
distinguished symbol, the axiom element can be embedded inside the respective declaration
(like the type elements in our example).

2.4 Defining Sets with Constructors by sortdef

We will use Listing 3 as a running example for the sortdef element. A sortdef element is
a highly condensed piece of syntax that declares a sort (an inductively defined set, i.e. one
that contains all objects that can be written by a set of constructors). As a consequence, a
sortdef element contains a set of constructor and insort elements, the latter are a useful
shorthand that allow to specify that all the constructors of a given sort can also be used.
insort elements are empty, they only refer to a sort declared elsewhere in a sortdef with
their xref attribute.

The constructor elements specify the OPENMATH symbols that can be used to construct
the elements of its sort. Since a constructor is in general an n-ary function, a constructor
element contains n argument children that give the argument sorts of this function. Note that
n may be 0 and thus the constructor element may be empty. Sometimes it is convenient to
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specify the inverses of a constructor, for this OMDoC offers the possibility to add an empty
selector element to an argument, its attribute total specifies whether this symbol is a total
(value ’yes’) or a partial (value *no’) function.

Finally, a sortdef element can contain a recognizer child that specifies a predicate (and
OPENMATH symbol) that is true, iff its argument is of the respective sort.

Listing 3: A definition for the natural numbers

<theory id="nat” >
<sortdef id="nat.sort” name="nat” semantics="1free” >
<commonname>The set of natural numbers</commonname>
<constructor name="zero” />
<insort xref="pos” />
< /sortdef>

<sortdef id="pos.sort” name="pos” semantics="free” >
<commonname>The set of positive natural numbers</commonname>
<constructor name="succ” >
<commonname>The successor function</commonname>
<argument sort="nat” >
<selector total="yes” name="pred” >
<commonname>The predecessor function</commonname>
< /selector>
< /argument>
<recognizer name="positive” />
< /constructor>
< /sortdef>

< /theory>

In our example in Listing 3 the sortdef elements define two sorts pos and nat for the
(positive) natural numbers. Positive numbers are generated by the successor function (which
is a constructor) on the natural numbers (all positive naturals are successors). On pos, the
inverse pred of succ is total. The set nat of all natural numbers is defined to be the union
of pos and the constructor zero. Note the use of mutuality here: the sort definition for nat
refers to that of pos-nat and vice versa.

Furthermore, note that these sortdef definitions in Listing 3 are equivalent to the well-
known Peano Axioms in Figure 1: the first two specify the sorts constructors, the third and
fourth exclude identities between constructor terms, while the induction axiom states that nat
is generated by zero and succ. We have specified this equivalence in the semantics attribute
in the sortdef element for nat. A sort (or abstract data type) is called free, iff there are no
identities between constructor terms, i.e. if two objects represented by different constructor
terms can never be equal. An example of a free abstract data type is the theory of natural
numbers.

An example of a abstract data type that is not free is the theory of finite sets given by the
constructors emptyset and insert since the set {a} can be obtained by inserting a into the
empty set an arbitrary (positive) number of times. This kind of abstract data type is called
generated, since it only contains elements that are expressible in the constructors.

If a abstract data type is loose, then it may contain other elements together with the ones
generated by the constructors. Thus the semantics attribute of the sortdef element can have
the values free’ and ’generated’ and ’loose’. Note that the set of axioms equivalent to
a ’generated’ sort would not contain axioms 3. and 4., and that for a sort with ’loose’
semantics would also lack the analogue of the induction axiom (5.).
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2.5 Defining Non-Constructor Symbols

Objects that are not constructors can be defined by the definition in OMDoOC. Since it is
a symbol-declaring element, it has the content model described in section 2.3. It additionaly
allows one of two primary elements that specify the meaning of the respective new symbol:
an

OMOBJ/m:math/legacy with an OPENMATH representation of a logical formula. Here, the
meaning of the definition is that the defined symbol can be replaced by the content of
the omobj element.

rule with a set of case equations whose left and right hand sides are specified by two
children of the rule element. Here the intended meaning of the defined symbol is that
the content of the second child (with the variables suitably substituted) can be replaced
for an instance of the first child.

their meaning is further specified by a type attribute which can have the values

>implicit’ This kind of definition is often (more accurately) called definition by desription,
since the definiendum is described so accurately, that there is exactly one object satis-
fying the description. Thus as in the >loose’ case, the definition element does not
contain a replacement definition as an OMOBJ/m:math/legacy element. However, the
meaning of the symbol is fully specified by the axiom siblings of the definition ele-
ment. To verify this, the dominating definition element must have a well-defined
attribute that points to a well-definedness assertion. This states that for each symbol
defined in the definition element there can be at most one object that satisfies the
axioms, and that such objects exist. We give an example of an implicit definition in
Listing 6.

’simple’ (default) in this case the replacement formula may not contain the symbol itself, or
one whose definition depends on this one, since this would result in a cyclic replacement.
Since well-definedness is trivial here, a well-defined attribute is not needed.

To get a feeling for this let us consider the definition in Listing 4, a very simple formal-
ization of the definition in Figure 2.1. The definition is a simple definition for the
symbol one. Its CMP child holds the natural language version of the definition, and the
FMP holds the formal version of this. The type elements specify that 1 is a positive num-
ber in the type system “simple-sorts” (whatever that may be) and a natural number
in OPENMATH’s small type system [Dav99].

’recursive’ in contrast to the >simple’ case, the substitution formulae can contain defini-
tional cycles, e.g. the defined symbol itself. To guarantee termination of the recursive
instantiation (this is necessary to ensure well-definedness), it is possible to give a mea-
sure (an OPENMATH formula) that maps the arguments to values in a well-founded
ordering in the optional measure and ordering eclement. Alternatively, a termina-
tion proof can be specified as part of the well-defined attribute of the dominating
definition element.

’obj’ this can be used to directly give the concept defined here as an OPENMATH object,
e.g. as a group representation generated by a computer algebra system.
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Listing 4: A definition of the natural number 1 from 0 and the successor function

<definition id="one—def’ name="one” type="simple” >
<CMP>1 is the successor of 0</CMP>
<type system="simple—sorts” ><OMOBJ><OMS cd="nat” name="pos” /></OMOBJ>< /type>
<type system="http://mbase.mathweb.org/omstd#sts” >
<OMOBJ><OMS cd="setname” name="N"/></OMOBJ>
</type>
<FMP>
<OMOBJ><OMA><OMS cd="nat” name="succ” /><OMS cd="nat” name="zero” /></OMA></OMOBJ>
</FMP>
< /definition>

Listing 5: A recursive definition

<definition id="plus—def’ name="plus” type="recursive”’ >
<commonname>addition< /commonname>
<CMP>Addition is defined by recursion on the second argument</CMP>
<rule>
<OMOBJ>
<OMA><OMS cd="nat” name="plus” /><OMV name="X"/><OMS cd="nat” name="zero” /></OMA>
</OMOBJ>
<OMOBJ><OMYV name="X"/></OMOBJ>
</rule>
<rule>
<OMOBJ>
<OMA><OMS cd="nat” name="plus” />
<OMV name="X"/>
<OMA><OMS cd="nat” name="succ” /><OMV name="Y"/></OMA>
</OMA>
</OMOBJ>
<OMOBJ>
<OMA><OMS cd="nat” name="succ” />
<OMA><OMS cd="nat” name="plus” /><OMV name="X"/><OMV name="Y”/></OMA>
</OMA>
</OMOBJ>
</rule>
< /definition>

Listing 6: An implicit definition of the exponential function

<definition id="exp” type="implicit” well—defined="exp—well—def” />
<FMP><+exp’ = exp A exp(0) = 1+></FMP>
< /definition>
<assertion id="exp—well—def” >
<CMP>
There is at most one differentiable function that solves the
differential equation in Definition <ref id="exp” xref="exp—def’/>.
</CMP>
< /assertion>

2.6 Mutually (recursive) Definitions

In general, definitions can be more general than the simple example in Listing 4 above, in
Figure 2.4 we have seen a mutually recursive definition. For these situations, OMDOC uses
the mutual element?, whose content is a list of

declaration to declare new symbols and

2This element is similar to the joint element used to group proofs into groups for joint inductions; see
section 3.
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sortdef elements for defining sorts, i.e sets build populated by objects built up from con-
structor symbols and

definition elements for defining additional symbols in terms of constructors.

The mutual element carries an id for identification and an attribute type that can have the
values ’recursive’ and ’corecursive’ Every element of a recursively defined set is a fi-
nite tree whose nodes are constructors. Typical examples of recursive definitions are natural
numbers (constructed by 0 and successor), lists (constructed by the empty list and the cons
operator), binary trees (constructed by the empty tree and the node operator). A function
whose domain is a recursively defined type/set is defined by structural recursion if the defi-
nition is recursive and every recursive call is applied to a subterm of the term. For example,
structural recursion over natural numbers allows recursion only over the predecessor, while
structural recursion over binary trees allows recursive calls only when applied to the two
sub-trees. Since every recursive element is a finite tree, every function defined by structural
recursion is total and every definition given by structural recursion is well-founded.

Dually, every element of a co-recursively defined set is a (possibly) infinite tree whose node
are constructors. The canonical example of co-recursive definitions is a stream (i.e. an infinite
list). Co-recursive definitions are especially useful in the study of infinite processes, such as
process algebras in computer science. A function whose codomain is a co-recursively defined
type/set is defined by structural co-recursion if the definition is recursive and every recursive
call is the argument of a constructor. Thus co-recursive functions can build infinite objects.
The canonical example of a co-recursive function is the function that builds the stream of
integer numbers [0; 1;2;...]: the function increments the counter and build the stream whose
head is the counter value and whose tail is built by the recursive call. Since every functions
whose domain is co-recursively defined can not be recursive, it must be able to inspect only a
finite prefix of its input. Thus, in a lazy setting, every function is total and every co-recursive
definition enjoys a property, dual to the one of well-foundedness, that ensures the correctness
of the definition.

Every mutual element also carries an optional well-defined attribute that points to a
well-definedness assertion and proof. Finally, the mutual element carries an optional attribute
local which contains a whitespace-separated list of symbol names that are local (invisible
outside) to the group of definition schemata inside the mutual element. If the attribute local
is not present or the empty string, then all of the symbols declared inside globally visible. In
this way, the mutual element restricts the visibility of symbols that are declared inside.

Listing 7: An Mutually Recursive Definition of “even” and “odd”.

<mutual id="even—odd—def’ exports="even odd” >
<definition id="even—def” name="even” >
<CMP>
A natural number is called <with class="definiens” >even< /with>,
if it is the successor of an odd number.
</CMP>
< /definition>
<definition id="odd—def” name="0dd” >
<CMP>
A natural number is called <with class="definiens” >odd</with>,
if it is the successor of an odd number.
</CMP>
< /definition>
</mutual>
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3 Representing Proofs in OMDoc

Proofs form an essential part of mathematics and modern sciences. Conceptually, a proof is a
representation of uncontroversial evidence for the truth of an assertion.

The question of what exactly constitutes a proof has been controversially discussed. The
clearest (and most radical) definition is given by theoretical logic, where a proof is a sequence,
or tree, or directed acyclic graph (DAG) of applications of inference rules from a formally
defined logical calculus, that meets a certain set of well-formedness conditions. There is a
whole zoo of logical calculi that are optimized for various applications. They have in common
that they are extremely explicit and verbose, and that the proofs even for simple theorems
can become very large. The advantage of having formal and fully explicit proofs is that they
can be very easily verified, even by simple computer programs.

OMDoc provides the proofobject element for this; we will not go into this in this report,
but concentrate on representing mathematical practice, where the notion of a proof is more
flexible, and more geared for consumption by humans: any line of argumentation is considered
as a proof, if it convinces its readers that it can be expanded to a formal proof in the sense
given above. As the expansion process is extremely tedious, this option is very seldom really
carried out explicitly in practice. Moreover, as proofs are geared towards communication
among humans, they are given at vastly differing levels of abstraction. From a very informal
proof idea to the initiated specialist of the field, who can fill in the details himself, down
to a very detailed account for skeptics or novices. Note that such a proof will normally be
still well above the formal level. Furthermore, proofs will normally be tailored to the specific
characteristics of the audience, who may be specialists in one part of a proof while unfamiliar
to the material in others. Typically such proofs have a sequence/tree/DAG-like structure,
where the leaves are natural language sentences interspersed with mathematical formulae
(often called “mathematical vernacular”).

To provide a common markup system for mathematical practice of presenting proofs,
OMDoc concentrates on the tree/DAG-like structure of proofs. It supports a proof format
whose structural and formal elements are derived from hierarchical data structures developed
for semi-automated theorem proving (satisfying the logical side), but which also allows natural
language representations at every level (allowing for natural representation of mathematical
vernacular at multiple levels of abstraction.) This proof representation (see [BCFT97] for a
discussion and pointers) is a DAG of nodes which represent the proof steps. The proof steps
contain a representation of the local claim and a justification by either a logical inference rule
or higher-level evidence for the truth of the claim. This evidence can consist either of a proof
method that can be used to prove the assertion, or by a separate subproof, that could be
presented if the consumer was unconvinced. Conceptually, both possibilities are equivalent,
since the method can be used to compute the subproof (called its expansion).

Expansions of nodes justified by method applications are computed, but the information
about the method itself is not discarded in the process as in tactical theorem provers like
IsABELLE or NUPRL. Thus proof nodes may have justifications at multiple levels of abstraction
in a hierarchical proof data structure. Note that the assertions in the nodes can be given as
mathematical vernacular (in CMPs) or as logical formulae (in FMPs). This mixed representation
enhances multi-modal proof presentation [Fie97], and the accumulation of proof information
in one structure. Informal proofs can be formalized [Bau99]; formal proofs can be transformed
to natural language [HF96]. The first is important, since it will be initially infeasible to totally
formalize all mathematical proofs needed for the correctness management of the knowledge
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base. Moreover, the hierarchical format allows to integrate various other proof representations
like proof scripts (2MEGA replay files, ISABELLE proof scripts,. .. ), references to published
proofs, resolution proofs, etc, to enhance the coverage.

3.1 Informal Mathematical Data

To understand the content of a proof element, let us consider a proof (Figure 3) as it could be
found in typical elementary textbook, only we have numbered the proof steps for referencing
convenience.

Theorem: There are infinitely many prime numbers.

Proof: We need to prove that the set P of all prime numbers is not finite.
1.  We proceed by assuming that P is finite and reaching a contradiction.

Let P be {p1,...,pn}

Let ngfpl-"anr 1

Since for each p; € P we have ¢ > p;,

we conclude ¢ ¢ P.

We prove the absurdity by showing that ¢ is prime:

since for each p; € P we have ¢ = p;k + 1 for a given natural number k,
p; can not divide g;

8. thus, since P is the set of all prime numbers, ¢ must be prime. Q.E.D.

N i ol

Figure 3: A proof example.

Even if the proof is very short and simple, we can observe in it several characteristics
of a typical mathematical proofs. The proof starts with the thesis that is followed by eight
main “steps” (numbered from 1 to 8). Some of the steps (2, 3, 4, 5, 7, 8) leave the thesis
unmodified; these are called forward reasoning or bottom-up steps, since they are used to
derive new knowledge from the available one, with the aim of reaching the conclusion. Some
other steps (1, 6) are used to conclude the (current) thesis by opening new subproofs, each one
characterized with a new local thesis. These steps are called backward reasoning or top-down
steps, since they are used to reduce a complex problem (proving the thesis) to several simpler
problems (the subproofs). In our example, both backward reasoning steps open just a new
subproof: step 1 reduces the goal to proving that the finiteness of P implies a contradiction;
step 6 reduces the goal to proving that ¢ is prime. Note that we consider the last step (line
8) as a forward step that concludes exactly the thesis; it is perfectly reasonable to consider
it also as a special case of backward reasoning step, reducing the problem to an empty set of
new tasks. An example of backward reasoning step that opens more that just one subproof
is the usual reasoning by induction over natural numbers, where we reduce the proof of a
property P(n) to the two tasks of proving P(0) and proving P(m + 1) under the assumption
that P(m) holds. There may be steps that play both roles, being at the same time backward
reasoning and forward reasoning steps; nevertheless, their usage in mathematical textbooks is
very limited.

Some of the steps (2 and 3) are used to introduce new hypotheses, local declarations or
local definitions, whose scope extends from the point were they are introduced to the end of
the current subproof, covering also all the subproofs that are introduced. In our example, the
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scope of the hypothesis that P = {p1,...,p,} (line 2) are the lines 3-8, while the scope of the
local definition of ¢ (line 3) are the lines 4-8. In an inductive proof, for example, the scope of
the inductive hypothesis covers only the proof of the inductive step and not the proof of the
base case (independently from the order adopted to present them to the user).

The difference between an hypothesis and a local declaration is that the latter is used to
introduce as a variable a new element in a given set or type; the former, instead, is used to
locally state some property of the variables in scope. For example, “let n be a natural number”
is a declaration, while “suppose n to be a multiple of 2” is an hypothesis. The introduction of
a new hypothesis or local declaration should always be justified by a proof step that discharges
it. In our example the declaration P is discharged by step 1. Local definitions, instead, need
no discharging.

To sum up, every proof step is characterized by a current thesis and a context, which is the
set of all the local declarations, hypotheses and local definitions in scope. Furthermore, a step
can either introduce a new hypothesis, definition or declaration or can just be a forward or
backward reasoning step (called, from now on, a derive step). It is a forward reasoning derive
step if it leaves the current thesis as it is. It is a backward reasoning derive step if it opens
new subproofs, each one characterized by a new thesis and, possibly, also a new context.

3.2 Content Markup for Mathematical Proofs

Let us now come to the concrete markup scheme for proofs provided by OMDoOC. Due to the
complex hierarchical structure of proofs, sometimes it can be infeasible to utilize the tree-like
structure provided by XML; for these cases we use cross-referencing. Proofs are specified by
proof elements in OMDOC that have the attributes id, for, and theory. The for attribute
points to the assertion that is justified by this proof (this can be an assertion element or a
derive proof step, thereby making it possible to specify expansions of justifications and thus
hierarchical proofs). Note that there can be more than one proof for a given assertion.

The proof element starts with an optional metadata element followed by an optional
label element and it is a sequence of the following elements, with the constraint that it must
end in a derive or omtext element, which is the (logical) root of the proof.

hypothesis elements allow to specify local assumptions, well-known from calculi like Gentzen’s
Natural Deduction calculus [Gen35]. They allow the hypothetical reasoning discipline
needed for instance to specify proof by contradiction, by case analysis, or simply to
show that A implies B, by assuming A and then deriving B from this local hypothesis.
The scope of an hypothesis extends till the end of the proof element containing it. An
important special case of hypothesis is the case of so-called “inductive hypothesis”, this
can be flagged by setting the value of the attribute inductive to ’yes’; the default
value is ’no’. Example: “let S be finite”.

declaration/definition/sortdefmutual These elements are similar to the hypothesis el-
ements, but they are used to introduce new local symbols. They are described in sec-
tion 2. Example: “let S be a set of integers”.

joint elements are used to group together a piece of proof context. Their content model
differs from the one for proof in that they allow assertion and proof elements but
no derive elements. The optional type attribute can be used to determine the scoping
rules that are applied inside the joint element. The legal values are ’inductive’
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and ’coinductive’. When the attribute value is ’inductive’ and inside the joint
element there are assertion elements together with their proof elements, the assertions
can be recursively used in their proof. Additional conditions can be used to establish
the well-foundedness of the proof>. The usual induction principle over natural numbers,
for example, can be proved by well-founded induction in logical systems allowing this
primitive. ’coinductive’ is used in the dual case of proof by co-induction.

derive elements are used both for backward-reasoning steps or for forward-reasoning steps.
They derive a new claim from already known ones, from assertions or axioms in the
current theory, from the assumptions of the assertion that is under consideration in the
proof or from the new claims that they introduce in their subproofs (in case of top-down
steps). We will explain the derive elements content in detail below.

omtext elements are used for explanatory text that can be freely intermixed with the other
elements.

The most versatile element that can appear inside a proof is the derive element. Since we
want to use the derive element for several different kinds of proof steps (informal description,
sequent calculus rule application, natural deduction introduction or elimination rule applica-
tion, tactics application), we need a high degree of flexibility. That flexibility is given by the
method element that is used as the justification of the derive step: the attribute xref is a
reference to a method description, to be (either formally or informally) defined somewhere in
an external content dictionary (CD). The arguments of the method are given as children of
the method. Several kind of arguments are allowed:

premise A premise is a reference either to an hypothesis in scope or to a derive step in the
proof context (i.e. in a proof element that is an ancestor of the premise). The actual
reference is specified using the xref attribute in both cases; the attribute contains a
URI that points to the target.

lemma A lemma is a reference (via the xref attribute; see above) to an external assertion or
axiom that is used as a lemma in the proof.

Note that the referenced assertion or axiom must be in the scope of the current theory,
i.e the theory referenced in the theory) attribute of the outermost proof element. An
axiom or assertion element is in scope of the current theory, if it is inside a theory
element (or in case of the assertion element references a theory in its theory attribute)
that is imported (directly or indirectly) by the current theory.

Furthermore note that a proof containing a lemma element is not self-contained evidence
for the validity of the assertion it proves. Of course it is only evidence for the validity
at all (we call such a proof grounded), if all the assertion targets of lemma references
have grounded proofs themselves and the reference relation does not contain cycles. A
grounded proof can be made self-contained by replacing all lemma elements by their
target assertions together with a at least one proof?

proof Backward reasoning steps have proof elements holding their subproof. A derive step
is a top-down step if it has at least one proof element. The prime example of this are

3In particular, the assertion must have at least an argument that decreases in each recursive applications.
4Note that the OMDOC format allows this replacement, since assertion and proof are allowed wherever
lemma is.
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inductive proofs, where the method is “by induction” and the proofs for the base and
step cases are subproofs.

OMOBJ/m:math/legacy Any other method argument which is not a premise, a lemma, a sub-
proof or another method are given as OPENMATH, MATHML, or OMDOC legacy format
expressions. A typical usage example is to give the witness of an existential statement.

method As OMDOC proofs serve as a general markup language for informal and formal proofs,
they must also be able to deal with so-called “proof scripts. Proof scripts are structured
sequences of commands used in tactic-based proof-assistants to make the system proceed
in the proof. They can be thought as a macro-language to interact with the system. The
basic proof script commands are called tactics, they are programs that synthesize parts
of a proof. In this respect tactics are natural candidates for method descriptions. Most
proof assistants have formal inference rules as basic (primitive) tactics and compose
tactics to more powerful ones by so-called tacticals® A tactical is a functor whose input
is a list of tactics and whose output is a new tactic. To account for this use in proof
scripts we must be able to encode application of tacticals.

Example: the Then tacticals has two arguments which are two tactics; it behaves as the
composition of the first argument with the second (i.e. (Then T1 T2) applies the tactic
T1 to the current goal and then applies the tactic T2 to the new goal generated by T1).
In OMDoOC the method element is used for the tactics arguments of a tactical. If, for
instance the tactics T1 and T2 do not take arguments, the justification (Then T1 T2)
can be encoded in OMDoc as follows

<method xref="#byctx(then@CoqTacticals)” ><method xref="T1” /><method xref="T2” /></method>

5The expressive power of tactical languages has been progressively increased during the last years. For
example, the scripting language of the Coq proof-assistant is now an almost fully-fledged programming language
similar to the ML language.
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Listing 8: An OMDoC representation of the proof in Figure 3.

<assertion id="al”><CMP>There are infinite prime numbers</CMP>< /assertion>
<proof for="al”>
<derive id="pd1” >
<CMP>There are infinite prime numbers</CMP>
<method xref="By_definition_of” >
<OMS xref="infinite” />
<proof>
<derive id="pd2” >
<CMP>If P is finite then absurd.</CMP>
<method xref="Discharge” >
<proof>
<hypothesis id="h1”><CMP>Let P be {p1,...,pn}</CMP></hypothesis>
<definition id="d1” name="q” >

<CMP>Let ¢ Y py - pp + 1</CMP>
< /definition>
<derive id="pl1” >
<CMP>For each p; € P we have ¢ > p;</CMP>
<method xref="Trivial” ><premise xref="d1” /></method>
< /derive>
<derive id="p2” >
<CMP>q ¢ P</CMP>
<method xref=""Trivial” ><premise xref="pl” /></method>

< /derive>
<derive id="p3" >
<CMP>False</CMP>

<method xref="Contradiction” >
<premise xref="p2” />
<proof>
<derive id="p3” >
<CMP>For each p; € P we have ¢ = p;k + 1 for a given natural number k</CMP>
<method xref="By_Definition” ><premise xref="d1” /></method>
< /derive>
<derive id="p4” ><CMP>Each p; € P does not divide ¢</CMP>< /derive>
<derive>
<CMP>q is prime</CMP>
<method xref="Trivial” ><premise xref="h1" /><premise xref="p4” />< /method>
< /derive>
< /proof>
</method>
< /derive>
< /proof>
</method>
< /derive>
< /proof>
</method>
< /derive>
< /proof>
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A The Document Type Definition

We reprint the relevant parts of the new OMDOC document type definitions here.

A.1 DTD-Module ST: Mathematical Statements

The DTD module ST deals with mathematical statements like assertions and examples in
OMDoc. The entities file introduces parameter entities for the top-level element names it
can be referenced by the public identifier "-//0MDoc//ENTITIES OMDoc ST V1.2//EN"

<l—=
An XML DTD for Open Mathematical documents (OMDoc 1.9): Module ST Entities
PUBLIC: —//OMDoc//ENTITIES OMDoc ST V1.9//EN
SYSTEM: <mowgli—CVS>/omdocst.ent
See the documentation and examples at http://www.mathweb.org/omdoc
(c) 1999—2003 Michael Kohlhase, released under the GNU Public License (GPL)
-—>

<!ENTITY % omdocst.theory.qname ”%omdoc.pfx;theory” >
<IENTITY % omdocst.type.qname ” %omdoc.pfx;type” >

<!IENTITY % omdocst.imports.qname ” %omdoc.pfx;imports” >
<IENTITY % omdocst.axiom.qname ” %omdoc.pfx;axiom” >
<IENTITY % omdocst.definition.qname ” %omdoc.pfx;definition” >
<!ENTITY % omdocst.declaration.qname ” %omdoc.pfx;declaration” >
<IENTITY % omdocst.assertion.qname ” %omdoc.pfx;assertion” >
<!ENTITY % omdocst.example.qname ” %omdoc.pfx;example” >
<!IENTITY % omdocst.sortdef.qname ” %omdoc.pfx;sortdef” >
<IENTITY % omdocst.mutual.qname ”%omdoc.pfx;mutual” >

<!ENTITY % omdocst.class
7| %omdocst.type.qname;
|%omdocst.assertion.qname;
|%omdocst.example.qname;” >

<IENTITY % omdocst.theory.class ”|%omdocst.theory.qname;” >

<IENTITY % omdocst.def.class
” %omdocst.definition.qname;
|%omdocst.declaration.qname;
|%omdocst.sortdef.qname;
|%omdocst.mutual.gname” >

<IENTITY % omdocst.onlyintheory.class
?%omdocst.def.class;
|%omdocst.axiom.qname;
|%omdocst.imports.qname;” >

The ST elements are defined in the following file, which can be referenced by the public
identifier "-//0MDoc//ELEMENTS OMDoc ST Vi.2//EN",

<l——
An XML DTD for Open Mathematical documents (OMDoc 1.9) Module ST
SYSTEM: <mowgli—CVS>/omdocst.dtd
PUBLIC —//OMDoc//DTD OMDoc ST V1.9//EN
See the documentation and examples at http://www.mathweb.org/omdoc
(c) 1999—2003 Michael Kohlhase, released under the GNU Public License (GPL)
-—>

<!—— gnames for omdoc statements ——>

<IENTITY % omdocst.rule.qname ”%omdoc.pfx;rule” >

<!ENTITY % omdocst.commonname.qname ” %omdoc.pfx;commonname” >
<IENTITY % omdocst.measure.qname ” %omdoc.pfx;measure” >
<!IENTITY % omdocst.ordering.qname ” %omdoc.pfx;ordering” >
<!ENTITY % omdocst.requation.qname ”%omdoc.pfx;requation” >
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<!ENTITY % omdocst.insort.qname ” %omdoc.pfx;insort” >
<IENTITY % omdocst.constructor.qname ” %omdoc.pfx;constructor” >
<!ENTITY % omdocst.recognizer.qname ” %omdoc.pfx;recognizer” >
<IENTITY % omdocst.argument.qname ”%omdoc.pfx;argument” >
<!IENTITY % omdocst.selector.qname ”%omdoc.pfx;selector” >

<!IENTITY % symbol.attrib "name CDATA #REQUIRED” >

<IENTITY % omdocst.intheory.class
”%omdocst.onlyintheory.class;

%omdocdoc.class;
%omdocst.class;
%omdocpf.class;
%omdocpres.class;
%omdocext.class;
%omdocquiz.class;
Y%omdoc.extra.class;
%omdoccth.sth.extra;” >

<IENTITY % otherdefinitiontype ”” >
<!ENTITY % definitiontype ” (implicit|simple|recursive|obj
%otherdefinitiontype;)” >

<!ENTITY % mcct ”%omdocdoc.meta.content;(%omdocmtxt. CMP.gname;|
%omdocst.commonname.qname;|
%omdocst.type.qname;
%omdocpres.symbol.class;)*” >
<!ENTITY % mcc ” %omdocdoc.meta.content;(%omdocmtxt. CMP.qname;)*,
(%omdocst.commonname.gname;%omdocpres.symbol.class;)+” >
<IENTITY % cfm ” %omdocdoc.meta.content;
(Y%omdocmtxt.CMP.qname;)*,(%omdocmtxt. FMP.gname;)?” >

<!ENTITY % welldef.attrib ”well—defined CDATA #IMPLIED” >
<!—— the attribute 'well—defined’ is an URIref that points to a proof
of well—definedness of the definition ——>

<!ELEMENT %omdocst.commonname.gname; (%omdoc.mtext.content;)*>
<!ATTLIST %omdocst.commonname.gqname;

%xml.lang.attrib;

%mid.attrib;>

<IELEMENT %omdocst.type.qname; ((%omdocmtxt.CMP.qname;)*,(%omdocmobj.class;))>
<IATTLIST %omdocst.type.qname; %idi.attrib;

for CDATA #IMPLIED

system CDATA #REQUIRED>

<IELEMENT %omdocst.axiom.qname; (%cfm;)>
<!ATTLIST %omdocst.axiom.qname; %idg.attrib;>

<!ELEMENT %omdocst.mutual.qname;
(%omdocdoc.meta.content;
(%omdocmtxt. CMP.qname; ),
(%omdocst.sortdef.qname;|
Y%omdocst.definition.qname;|
Y%omdocst.axiom.qname;)*)>
<!ATTLIST %omdocst.mutual.qname;
type (recursive|corecursive) #IMPLIED
local CDATA #IMPLIED

%welldef.attrib;
%id.attrib;>
<!—— attribute ’local is a whitespace—separated list of symbol names
that are local (invisible outside). ——>

<!ELEMENT %omdocst.measure.qname; (%omdocmobj.class;)>
<IATTLIST %omdocst.measure.qname; %mid.attrib;>

<!ELEMENT %omdocst.ordering.qname; (%omdocmobj.class;)>
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<!ATTLIST %omdocst.ordering.qname; %mid.attrib;>

<IELEMENT %omdocst.assertion.qname; (%cfm;%omdocpf.opt.proof;)>
<IATTLIST %omdocst.assertion.qname; %idg.attrib;
theory NMTOKEN #IMPLIED
type (Yassertiontype;) ”conjecture”
name CDATA #IMPLIED
evidence CDATA #IMPLIED>
<!—— the %assertiontype; has no formal meaning yet, it is solely
for human consumption. The ’generated—by’ is for
theory—interpretations, which can generate assertions.
’evidence is a list of URIRefs that points to proofs or
counter—examples——>

<!ELEMENT %omdocst.example.qname;
(%omdocdoc.meta.content;(%omdocst.definition.qname;)*,
(%omdocmtxt. CMP.qname;)*,(%omdocmobj.class;)*) >
<IATTLIST %omdocst.example.qname;
%omdoc.xmlns.theory.attrib;
type (for|against) #IMPLIED
assertion CDATA #IMPLIED
%idref.attrib;>
<!—— attributes assertion is an URIref ——>

<IELEMENT %omdocst.sortdef.qname;
(%omcct;,(Y%oomdocst.constructor.gqname;|%omdocst.insort.qname; )*) >
<IATTLIST %omdocst.sortdef.qname;
%id.attrib; %symbol.attrib; %welldef.attrib;
semantics (loose|generated|free) ”loose” >

<!—— Definitions contain CMPs and concept specifications. The latter come in two
forms. Type definitions define types and their constructors. Object
definitions define mathematical objects. Note that both can define mutually
dependent sets of types and objects. The the types and objects can be
reached under this name in the content dictionary for the theory the
definition is placed in. ——>

<!ELEMENT %omdocst.declaration.qname;

(Y%mcct;, (Y%omdocst.axiom.qname; )*) >
<IATTLIST %omdocst.declaration.qname;

%id.attrib; %symbol.attrib; %welldef.attrib;>

<IELEMENT %omdocst.definition.qname;
(Y%mecct;,

((%omdocst.rule.qname;)+|%omdocmobj.class;| %omdocmtxt. FMP.qname;)?,

(%omdocst.measure.qname;,(%omdocst.ordering.qname;)?)?) >
<IATTLIST %omdocst.definition.qname;
%id.attrib; %symbol.attrib; %welldef.attrib;
type %definitiontype; ”simple” >

<!ELEMENT %omdocst.rule.qname;
((%omdocmobj.class;),(%omdocmobj.class;)) >
<!ATTLIST %omdocst.rule.qname;
%idi.attrib;>

<!ELEMENT %omdocst.insort.qname; EMPTY >
<!ATTLIST %omdocst.insort.qname; xref CDATA #REQUIRED>
<!—— ’xref’ is a reference to a sort symbol element ——>

<!ELEMENT %omdocst.constructor.qname;
(%mec;,(Y%omdocst.argument.qname; ), (%omdocst.recognizer.qname;)?) >
<!ATTLIST %omdocst.constructor.qname; %symbol.attrib;>

<IELEMENT %omdocst.recognizer.qname; (%mcc;)>
<IATTLIST %omdocst.recognizer.qname; %symbol.attrib;>

20
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<!ELEMENT %omdocst.argument.qname; (%omdocst.selector.qname;)?>
<IATTLIST %omdocst.argument.qname;

sort CDATA #REQUIRED>
<!—— sort is a reference to a sort symbol element ——>

<IELEMENT %omdocst.selector.qname; (%mcc;)*>
<!ATTLIST %omdocst.selector.qname;
%symbol.attrib;
total (yes|no) "no”>

<!ELEMENT %omdocst.theory.qname;
(%omdocdoc.meta.content;(%omdocst.commonname.gname; ) *,
(%omdocmtxt.CMP.qname;)*,(%omdocst.intheory.class;)*)>
<!ATTLIST %omdocst.theory.qname;
%omdoc.xmlns.theory.attrib;
id ID #REQUIRED
style NMTOKEN #IMPLIED>
<!—— theory identifiers should be unique per document ——>

<!ELEMENT %omdocst.imports.qname;
((%omdocmtxt.CMP.qname;)*%omdoccth.imports.mix;) >
<!ATTLIST %omdocst.imports.qname;
%omdoc.xmlns.theory.attrib;
%from.attrib;
hiding CDATA #IMPLIED
type (local|global) ”global” >
<!—— hiding is a list of references to symbol ids ——>

A.2 DTD-Module PF: Proofs and Proof objects

The DTD module PF deals with mathematical argumentation and proofs in OMDoc.
The entities file introduces parameter entities for the top-level element names it can be
referenced by the public identifier "-//0MDoc//ENTITIES OMDoc PF V1.2//EN"

<l—=
An XML DTD for Open Mathematical documents (OMDoc 1.9): Module PF Entities
PUBLIC: —//OMDoc//ENTITIES OMDoc PF V1.9//EN
SYSTEM: <mowgli—CVS>/omdocpf.ent
See the documentation and examples at http://www.mathweb.org/omdoc
(c¢) 1999—2003 Michael Kohlhase, released under the GNU Public License (GPL)
—>

<!ENTITY % omdocpf.proof.qname ” %omdoc.pfx;proof’ >
<IENTITY % omdocpf.proofobject.qname ” %omdoc.pfx;proofobject” >

<!—— set this entity to the empty string, when not importing module PF ——>

<IENTITY % omdocpf.class ”|%omdocpf.proof.qname;
|%omdocpf.proofobject.qname;” >
<!—— use this entity to add an optional proof,
for example inside an assertion ——>
<!ENTITY % omdocpf.opt.proof ”,(%omdocpf.proof.qname;
|%omdocpf.proofobject.qname;)” >

The PF elements are defined in the following file, which can be referenced by the public
identifier "-//0MDoc//ELEMENTS OMDoc PROOF V1.2//EN",

<!——
An XML DTD for Open Mathematical documents (OMDoc 1.9) Module PF
SYSTEM: <mowgli—CVS>/omdocpf.dtd
PUBLIC: —//OMDoc//DTD OMDoc PF V1.9//EN
See the documentation and examples at http://www.mathweb.org/omdoc
(c) 1999—2003 Michael Kohlhase, released under the GNU Public License (GPL)
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-——>

<!—— gnames for omdoc statements ——>

<!ENTITY % omdocpf.metacomment.qname ” %omdoc.pfx;metacomment” >
<IENTITY % omdocpf.derive.qname ” %omdoc.pfx;derive” >

<IENTITY % omdocpf.hypothesis.qname ” %omdoc.pfx;hypothesis” >
<IENTITY % omdocpf.joint.qname ” %omdoc.pfx;joint” >

<!ENTITY % omdocpf.method.qname ”%omdoc.pfx;method” >

<IENTITY % omdocpf.premise.qname ” %omdoc.pfx;premise” >

<!ENTITY % omdocpf.lemma.qname ”%omdoc.pfx;lemma” >

<!IENTITY % omdocpf.label.qname ” %omdoc.pfx;label” >

<IENTITY % omdocpf.proof.core.content
”%omdocst.def.class;
|%omdocpf.hypothesis.qname;
|%omdocpf.joint.qname;
|%omdocmtxt.omtext.qname;” >

<!ENTITY % omdocpf.proof.full.content
?%omdocpf.proof.core.content;
|%omdocpf.derive.qname;” >

<IENTITY % omdocpf.proof.restricted.content
”%omdocpf.proof.core.content;
|%omdocst.assertion.qname;
|%omdocpf.proof.qname;” >

<!ELEMENT %omdocpf.proof.qname;
(%0omdocdoc.meta.content;(%omdocpf.label.qname;)?,
(%omdocmtxt. CMP.qname; ),
(%omdocpf.proof.full.content;)*) >
<!—— Constraint: the context must end with either a derive or a mxtext ——>
<!ATTLIST %omdocpf.proof.qname;
%omdoc.xmlns.theory.attrib;
type (inductive|coinductive) #IMPLIED
theory NMTOKEN #IMPLIED
%idrefi.attrib;>

<IELEMENT %omdocpf.proofobject.qname;
(%omdocdoc.meta.content;(%omdocpf.label.qname;)?,
(Y%omdocmtxt.CMP.gname;)*,(%omdocmobj.class;)) >
<!ATTLIST %omdocpf.proofobject.qname;
%omdoc.xmlns.theory.attrib;
theory NMTOKEN #IMPLIED
%idref.attrib;>

<IENTITY % just.content
7 (%omdocpf.method.qname;)?,
(%omdocpf.proof.qname;|%omdocpf.proofobject.qname;)?” >
<!—— The optional proof or proofobject is to be intended as the
explosion/explanation of the method. ——>

<!ELEMENT %omdocpf.derive.qname;
((%omdocpf.label.qname;)?,(%omdocmtxt. CMP.qname; ),
(%omdocmtxt. FMP.qname;)*,%just.content;) >
<!ATTLIST %omdocpf.derive.qname;
%omdoc.xmlns.theory.attrib;
%id.attrib;>
<!—— CSC: there are two possibilities here in the case we also need a context:
1. we can add the context to the derive
2. we do not change the DTD and we use a dummy ”proof” method with the
explosion (that is just the proof). Is this solution compatible with
the above comment about just.content?
——>

<IELEMENT %omdocpf.label.qname; (%omdoc.mtext.content;)>
<!—— CSC: WARNING!!! There is also PCDATA here! ——>
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<IELEMENT %omdocpf.hypothesis.qname;
((Y%oomdocpf.label.gqname;)?,(%omdocmtxt. CMP.gname;)*,
(Y%omdocmtxt. FMP.qname;)*)>
<!ATTLIST %omdocpf.hypothesis.qname;
%omdoc.xmlns.theory.attrib;
%id.attrib;
inductive (yes|no) "no” >

<!ELEMENT %omdocpf.method.qname;
((%omdocpf.method.qname;|%omdocmobj.class;|
Y%omdocpf.lemma.qname;|%omdocpf.premise.qname;|
Y%omdocpf.proof.qname;)*)>
<!ATTLIST %omdocpf.method.qname;
%omdoc.xmlns.theory.attrib;
%css.attrib;
xref CDATA #REQUIRED
ranks CDATA #IMPLIED>
<!—— ’xref’ is a pointer to the omdoc:symbol defining the method ——>
<!—— The ranks string is a white—space separated list of non—negative numbers.
Each number specifies the rank of the corresponding premise.
The rank of a premise specifies its importance in the
inference rule. Rank 0 is a real premise,
whereas positive rank signifies sideconditions of
varying degree. ——>
<!—— CSC: we also need to encode other information for each premise/proof
(e.g. its arity). Since this attribute just holds presentational
information, it seems reasonable to put it into the ”style” attribute
(the one used for CSS).
——>

<IELEMENT %omdocpf.premise.qname; (%omdoc.mtext.content;)>
<!ATTLIST %omdocpf.premise.qname;
xref CDATA #REQUIRED>

<IELEMENT %omdocpf.lemma.gname; (%omdoc.mtext.content;)s*>
<!ATTLIST %omdocpf.lemma.qname;
xref CDATA #REQUIRED>

<IELEMENT %omdocpf.joint.qname; ((%omdocpf.proof.restricted.content;)*)>
<IATTLIST %omdocpf.joint.qname;
type (inductive|coinductive|
inductive—recursive|coinductive—corecursive) #IMPLIED>
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